Synthesis and Study of Acetylenic Amines Derivatives from *p*-Aminophenol

M.A. Sheat and S.R. Ali Chemistry Dept., College of Science, University of Mosul

(NJC)

(Received on 10 /7 /2005) (Accepted for publication on 29 / 4 /2006)

Abstract

New acetylenic amines derivatives from *p*-aminophenol have been synthesized through Mannich reaction which involved reaction of *p*-acetamidophenyl propargyl ether and *p*-phthalimidophenyl propargyl ether with paraformaldehyde and secondary amines. Some of the synthesized acetylenic amines passed through alkaline hydrolysis to release free amine group which was allowed to be reacted with aldehyde or ketone to produce shiff bases. The synthesized compounds were investigated by physical and spectroscopic methods.

Introduction

Mannich reaction was found to be one of well known reaction in syntheses of pharmaceutically active compounds especially acetylenic amines derivatives. This reaction involves condensation of formaldehyde with ammonia or a primary or secondary amine with a compound containing reactive hydrogen to form Mannich bases^[1]. Among compounds containing reactive hydrogen are pyrazolinines ^[2], benzimidazol and benzotriazol^[3], 6acylbenzoxazolinones ^[4], acetylenic compounds^[5] and phenols ^[6]. It was noticed that the acetylenic amines derivatives showed different pharmacological activities such as anticholinergic agents ^[7], hypertensive agents ^[8], anticancer agents ^[9], oxotremorine antagonists ^[10] and antibacterial agents ^[11].

p-Aminophenol has been used in synthesis of well known drugs named *p*-acetamol (acetaminophen) ^[12] and phenacetin ^[13]. Acetaminophen (the active metabolite of phenacetin) is preferred over aspirin as an analgesic and antipyretic agent for patients who suffer from gastric ulcer or a coagulation disorder, also acetaminophen does not interfere with the actions of uricosuric agents as aspirin can ^[14]. The mixture of aspirin, phenacetin and caffeine (APC) is a nonpresciption analgesic preparation sold for relief of headache, muscular aches and pains, arthritis, and other common afflictions, besides APC is also antipyretic and anti-inflammatory and also acts as a central stimulant ^[15].

On the other hand, the phthalimide dervatives also showed biological activity such as acetylenic amines of succinimides and phthalimides which are used as anticholinergic agents and anti-Parkinsonian agent ^[7, 16], while N-substituted phthalimides demonstrated inhibitory effect on the tested micro organisms ^[17, 18].

Whereas, the biological activities of Shiff bases compounds were appeared as analgesic and antipyretic agents ^[19], Fungicides ^[20] and anti-inflammatory agents ^[21].

This paper is concerned with the syntheses of new compounds of expected biological activity not for they are acetylenic amines derivatives but also they are derivatives for well known drugs (*p*-acetamol and phenacetin), also derivatives for phthalimides and shiff bases.

Experimental

Melting points were measured by Gallenkamp melting point apparatus and are uncorrected. I.R. spectra were recorded by Pye Unicam SP 2000 Infrared Spectrophotometer as KBr disc. U.V. spectra were obtained from Cintras GBS Scientific Equipment.

Methods of Preparation:

Three series of acetylenic amines derivatives have been synthesized by following different methods of preparations.

I-Preparation of Acetylenic Amines Derivatives for *p*-Acetamol or Phenacetin:

1. Preparation of Acetaminophen (*p*-Acetamol) [1]:

In a 250 ml round bottom flask containing *p*-aminophenol (0.1 mole) and water (30ml). Acetic anhydride (0.127mole) was added with constant shaking. The mixture was heated on a water bath for about 15 mint. until the solid dissolves completely to produce a clear solution. Upon Cooling, pacetylaminophenol is precipitated which is filtered, washed with cold water, drained well and recrystallised from hot water to yield a fine milky crystals of *p*-acetylaminophenol (*p*acetamol) of 68% yield and m.p. (168-169°C) (lit. m.p. 169°C) [1].

2. Preparation of *p*-Acetamidophenyl propargyl Ether (I_a) [1]:

In a 250 ml round bottom flask filtted with a reflux condenser, sodium (0.8gm) was dissolved in absolute ethanol (20ml). The solution is cooled and

p-acetylaminophenol (0.033mole) and propargyl bromide (0.05mole) were added dropwise. The reaction mixture is heated under reflux for about one hour and then cooled in an ice-bath. The formed precipitate was filtered, washed with cold water and recrystallized from methanol to give the new desired product (I_a) as a deep brown crystals as shown in Table (1,2).

3. Preparation of N-(4-Amino-2-Butynyl)-*p*-Acetamidophenyl Ethers (I_{b-l}):

General Method (Mannich Reaction) [22].

The acetylenic compound (0.03 mole)was mixed with the secondary amine (0.036mole) in a round bottom flask fitted with a reflux condenser. The mixture was cooled to 0°C in an ice bath and paraformaldehyde (0.036 mole)and CuCl (0.06gm) in peroxide-free dioxane (16ml) were added. The reaction mixture was cooled again to 0°C, and glacial acetic acid (4.5ml) was added dropwise with shaking. The mixture was stirred at room temperature for 5minutes, then at 90°C for 2hrs.

After cooling, water (100ml) was added and the reaction mixture was acidified to (pH=1) by dropwise addition of 1:1(HCl-H₂O) with stirring, then extracted with $(2 \times 50 \text{ml})$ of ether (ether layer was neglected). The aqueous phase was made alkaline with saturated solution of sodium bicarbonate. The formed precipitate was filtered, washed several times with water, then dried and recrystallized from methanol or benzene to obtain the desired products (Ib-1) as shown in Tables (1,2).

Compd. No.	R	% yield	m.p. °C	Compd. No.		% yield	m.p. °C
Ia	io andi io A- 2360 00, d ee	95	106-108	Ig	-NCH3	50	68-70
I _b		57	209-211	I _h	-N	69	80-82
Ic		57	88-90	Ii		30	196-198
I _d	-N_0	69	121-123	Ij	-N	23	91-93
Ie	-N_N-CH ₂ Ph	95	116-118	I _k	−N−CH ₂ Ph l Ph	80	77-79
If	S S S S S S S S S S S S S S S S S S S	54	161-163	Iı	-N	78	111-113

 Table (1): The physical properties of compounds (I_{a-l})

Table (2): Spectroscopic data of compounds (I_{a-l})

Compd. No.		I.R. cm ⁻¹ (KBr)							
	V _{C-O-Ar}	VCC	v _{C=O}	v (br)	v _{C-H}	v _{N-H}	(CHCl ₃)		
	(s)	(s)	(s)		(s)	(br)	λ_{max} (nm)		
Ia	1275	1610	1650	2100		30(s)	248		
		1500							
I _b	1270	1600	1640	2120		3230	260		
		1580							
Ic	1275	1600	1640	2100		3230	258		
		1580							
I _d	1275	1610	1660	2100		3230	263		
		1500							
I _e	1275	1600	1640	2100		3175	261		
		1580							
I _f	1270	1580	1650	2100		3180	262		
		1500							
Ig	1275	1610	1650	2100		3170	262		
8									
I _h	1275	1580 1610	1650	2100		3175	262		
11									
Ii	1275	1580 1600	1640	2080		3230	261		
1									
Ij	1275	1580 1600	1650	2100		3180	258		
~J									
I _k	1270	1580 1600	1640	2100		3230	252		
≖K	1210		1070	2100		5250			
Iı	1275	1500 1600	1640	2120		3180	260		
11	1213		1040	2120		5160	200		
		1580							

Note: compound (I_i) showed ketonic vC=O at 1670cm⁻¹.

II- Preparation of Acetylenic Amines Derivatives for Phthalimides: 1. Preparation of *p*-Phthalimidophenol^[23]:

In a round bottom flask (250ml), *p*aminophenol (0.1mole) was mixed with phthalic anhydride (0.1mole) and acetic acid (20ml). The mixture was refluxed for 1hr. After cooling, the precipitate was filtered, washed with acetic acid then with cold water and recrystallized from methanol to obtain the desired product as a deep brown crystals of 66%yield and m.p. (300- 302° C).

2. Preparation of *p*-Phthalimidophenyl propargyl Ether (II_a):

This new compound (II_a) was prepared according to the modified method for the method in ref. ^[1] as shown below:

In a round bottom flask (250ml) fitted with a reflux condenser,

p-Phthalimidophenol (0.033mole) was added to the cooled solution of sodium (0.08gm) in absolute ethanol (25ml). The mixture was stirred at room temperature for 1hr, then cooled to (0- 10° C) and propargyl bromide (0.05mole) was added. The mixture was stirred at room temperature for 3hrs. After cooling, the precipitate was filtered, washed with cold water and recrystallized from ethanol to obtain the desired product (II_a) as a pale yellow fine crystals as shown in Tables (3,4).

3. Preparation of N-(4-Amino-2-Butynyl)-*p*-Phthalimidophenyl Ethers (II_{b-j}):

These compounds (II_{b-j}) have been prepared according to Mannich reaction as described in method (I-3), and purified by recrystallization from ethanol or benzene to obtain these compounds (II_{b-j}) as shown in Tables (3,4).

The alkaline hydrolysis of some compounds of series $I(I_{b-e})$ afforded the new acetylenic amines (III_{a1-d1}). When the latter compounds were allowed to be reacted with benzaldehyde or acetone, new acetylenic amines for shiff bases (III_{a2-e2}) were obtained as shown below:

Compd. No.		% yield	m.p. °C	Compd. No.		% yield	m.p. °C
IIa	90 258	71	227-229	IIf	-N_N-(C)-CH3	33	208-210
II _b		88	236-238	IIg	-NN-CH3	43	200-202
IIc		49	150-152	II _h		35	84-86
II _d	-N_N-CH ₂ Ph	90	105-107	IIi	-N	19	187-189
IIe	ST s	57	152-154	IIj	-N	G	ummy

Table (3): The physical properties of compounds (II_{a-i})

Table (4): Spectroscopic data of compounds (II_{a-j})

Comd.		I.R. cm ⁻¹ (KBr)								
No.	V _{C-O-Ar}	VC C	Imidic group		v _{cc}	v _{C-H}				
	(m)	(w)	v _{C=O}	v _{C=0}	(w)	(s)	λ _{max} (nm)			
			(s)	(w)						
IIa	1270	1600	1700	1615	2120	3230	256			
		1500								
II _b	1275	1600	1700	1620	2156		259			
		1500								
II _c	1260	1600	1700	1620	2100		259			
		1500								
II _d	1250	1600 1500	1680	1615	2110		258			
IIe	1270	1610	1680	1625	2150		264			
116	1270	1500	1000	1020	2150		201			
II _f	1275	1600	1700	1615	2170		260			
11	12,0	1000	1,00		2170		200			
		1500								
IIg	1250	1600	1715	1630	2170		262			
		1500								
II _h	1275	1600	1705	1625	2150		261			
		1500								
III	1240	1600	1715	1630	2100		258			
		1500								
IIj	Gummy	-	-	-	-		-			

1. Preparation of N-(4-Amino-2-Butynyl)-*p*-Anilino Ethers (III_{a1-d1}) $^{[24]}$:

In a round bottom flask (100ml), acetylenic amines (I_{b-e}) (0.07mole) was dissolved in absolute ethanol (10ml) with heating, then a solution of sodium hydroxide (5ml, 80%) was added. The mixture was refluxed for 30mint. then diluted with water (10ml) and concentrated by heating to about half

its volume. After cooling, crushed ice was added with stirring till solid precipitate was formed. The precipitate was filtered, washed with cold water and recrystallized from methanol-water to obtain the desired products (III_{a1-d1}) as a fine crystals as shown in Tables (5,6).

2. Preparation of N-(4-Amino-2-Butnyl)-*p*-Benzylidene Anilino Ethers (III $_{a2-e2}$) (Shiff Bases) ^[25]: Equimolar (0.003 mole) of acetylenic amines (III_{a1-d1}) and benzaldehyde or acetone, each one dissolved in absolute ethanol (10ml) with heating to be homogenous solutions. The solution of acetylenic amine was added gradually to the solution of aldehyde or ketone. The mixture was refluxed for 30mint with stirring. After cooling, the precipitate was filtered and recrystallized from ethanol to obtain the desired products (III_{a2-e2}) as a fine crystals as shown in Tables (5,7).

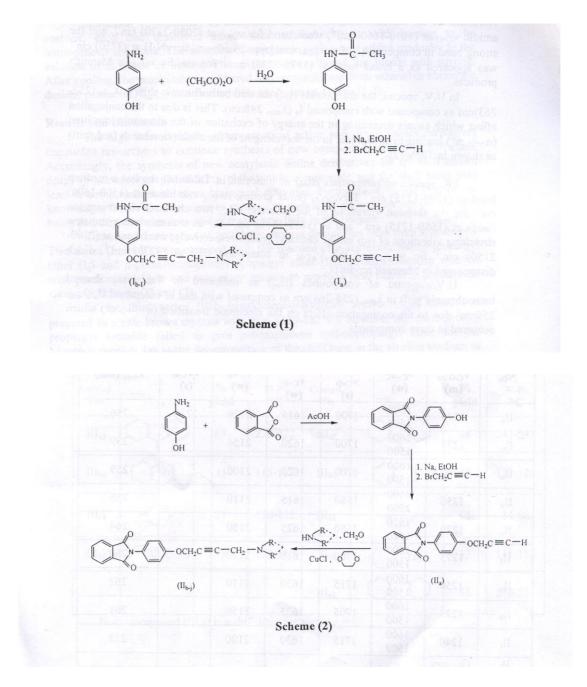
Table (5): The physical properties of compounds (III_{a1-d1}) and compounds (III_{a2-e2})

Compd. No.	-N R	% yield	m.p. °C	Compd. No.	-N R	% yield	m.p. °C
III _{a1}	CI,D	67	220-222	III _{a2}		48	241-243
III _{b1}		75	115-117	III _{b2}		53	122-124
III _{c1}	-NO	27	130-132	III _{c2}	-NO	63	84-86
III _{d1}	-N_N-CH ₂ Ph	71	108-110	III _{d2}	-N_N-CH ₂ Ph	33	115-117
21.	19404) 155 Storia da	R. Rash	a turn	III _{e2}		63	236-236

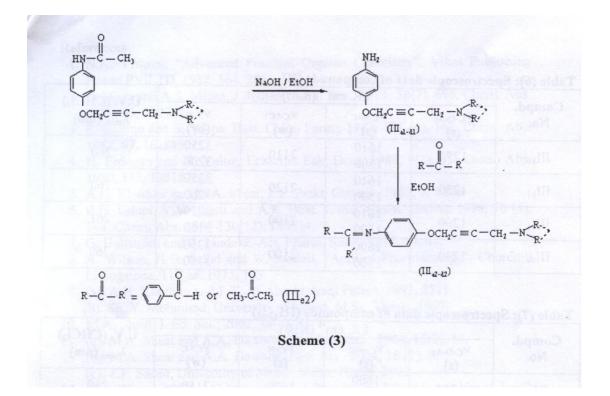
Compd. No.		U.V. (CHCl ₃)			
	V _{C-O-Ar}	V _C C	VCC	V _{N-H}	λ_{\max} (nm)
	(s)	(s)	(w)	(br)	
III _{a1}	1275	1610	2110	3250	260
		1500		3200	
III _{b1}	1250	1610	2120	3250	260
		1500		3200	
III _{c1}	1260	1610	2100	3250	261
		1500		3150	
III _{d1}	1240	1600	2100	3250	260
		1500		3150	

Table (6): Spectroscopic data of compounds (III_{a1-d1})

Table (7): Spectroscopic data of compounds (III_{a2-e2})


Compd. No.		I.R. cm ⁻¹ (KBr)							
	VC-O-Ar	V _C C	v _{C=N}	VCC	λ _{max} (nm)				
	(s)	(s)	(s)	(w)					
III _{a2}	1250	1600	1620	2150	260				
		1500							
III _{b2}	1260	1600	1620	2100	262				
		1500							
III _{c2}	1270	1610	1625	2100	262				
		1500							
III _{d2}	1255	1600	1615	2120	262				
		1500							
III _{e2}	1250	1600	1625	2120	260				
		1500							

Results and Discussion


The high interest of the pharmaceutical active acetylenic amines derivatives encourage researchers to continue synthesis of new compounds of this type of class. Accordingly, the synthesis of new acetylenic amine derivatives for the well known drugs (p-acetamol or phenacetin), phthalimide compounds and for shiff bases may lead to compounds with some biological activities. Furthermore, to the best of our knowledge, this is the first time to synthesize acetylenic amines derivatives for shiff bases and this synthesis is considered as a new field in the respect.

Therefore, three series of acetylenic amines derivatives have

been synthesized. Two series (I and II) were obtained from the reaction of pacetamidophenyl propargyl ether (I_a) and p-phthalimidophenyl propargyl ether (II_a) through Mannich reaction with paraformaldehyde and secondary amines to produce new Mannich products as shown in Scheme (1) and (2).

In the third series (III), benzylidene*p*-hydroxy aniline (shiff base) was prepared as a pale brown crystals with m.p. (183-185°C), however the reaction with propargyl bromide failed to give *p*-benzylidene anilinopropargyl ether for the Mannich reaction due to the decomposition of the shiff base in the alkaline medium as shown below: Therefore, the synthesis of acetylenic amines derivatives for shiff bases was achieved by another route which involved alkaline hydrolysis of some acetylenic amines derivatives of series I (I_{b-e}) followed by reaction with benzaldehyde or acetone to synthesize these compounds as shown in Scheme (3).

The synthesized acetyleinc amines derivatives have been investigated accrording to their physical and spectroscopic data (I.R. and U.V.) [26]. Other supporting evidences is the positive Tollen test for acetylenic hydrogen which became negative test in Mannich products, also the positive picrate formation test for the tertiary amino group in these compounds, and the positive Hinsberg test for the free primary amino group in compounds $(III_{a1-d1})^{[27]}$.

I.R. spectra of compounds (I_{a-1}) as indicated in Table (2) showed strong band at (1270-1275)cm⁻¹ for v_{C-O-Ar} (ether group), two strong bands for the skeleton vibrations of the aromatic ring at the region (1500-1610) cm⁻¹, strong band for the amidic $v_{C=O}$ at (1640-1660) cm⁻¹, weak band for v_{CC} at (2080-2120) cm⁻¹, and the strong band in compound (I_a) for v_{C-H} overlapped with amidic vN-H at (3230) cm⁻¹ was appeared as a broad band at (3175-3230) cm⁻¹ for amidic v_{N-H} in Mannich products. In U.V. spectra, the compounds (I_{b-1}) showed bathochromic shift in λ_{max} (252-263)nm as compared with compound I_a (λ_{max} 248nm). This is due to the conjugation effect which causes decreasing in the energy of excitation of the electronic transition (n π^*) leading to an increase in the wavelengths of the absorption bands (red shift) as shown in Table (2).

I.R. spectra of compounds (II_{a-i}) as indicated in Table (4) showed a medium band at (1240-1275) cm⁻¹ forv_{C-O-Ar} (ether group), two weak bands at (1500-1600)cm⁻¹ for the skeleton vibrations of the aromatic ring, two characteristic absorption bands at (1680-1715) cm⁻¹ at (1615 - 1630) cm^{-1} and for asymmetric and symmetric stretching vibrations of two imidic carbonyl groups respectively, weak band at (2100-2150) cm⁻¹ for v_{CC} and the v_{C-H} in compound (II_a) at (3230) cm⁻¹ which disappeared in Mannich products.

U.V. spectra of compounds (II_{a-j}) as indicated in Table (4) showed bathochromic shift in λ_{max} (258-264)nm as compared with that of compound II_a (λ_{max} 256nm) due to the conjugation effect on the electronic transition (n π^*) which occurred in these compounds.

I.R. spectra of compounds (III_{a1-d1}) as indicated in Table (6) showed strong band at (1240-1275)cm⁻¹ for v_{C-O-Ar} (ether group), two strong bands at the region (1500-1600)cm⁻¹ for the skeleton vibrations of the aromatic ring, weak band for v_{CC} at (2100-2120)cm⁻¹ and two broad bands at (3150-3200)cm⁻¹ and the other at (3250)

cm⁻¹ for the stretching vibrations of the primary amino group.

U.V. spectra of compounds (III_{a1-d1}) showed bathochromic shift in λ_{max} (260-261)nm as compound with that of *p*-aminophenol (λ_{max} 236nm) due to conjugation effect on the electronic transition (n π^*) which occurred in these compounds as indicate in Table (6).

I.R. spectra of compounds (III_{a2-d2}) as indicated in Table (7) showed strong band at (1250-1270)cm⁻¹ for v_{C-O-Ar} (ether group), two strong bands at the region (1500-1600)cm⁻¹ for the skeleton vibrations of the aromatic ring, weak band at (2100-2150)cm⁻¹ for v_{CC} , and strong characteristic band at (1615-1625)cm⁻¹ for the $v_{C=N}$ (imine group) in these compounds.

U.V. spectra of compounds (III_{a2-d2}) showed the wavelengths of the absorption bands at (260-262)nm due to the electronic transition (n π^*) which occurred on the imine group of

these compounds as shown in Table (7).

References

- N.K. Vishnoi, "Advanced Practical Organic Chemistry", Vikas Publishing House PVILTD, 1982, 364, 375.
- P. Mitra and A.S. Mittra, J. Indian Chem. Soc., 1981, 58(7), 695. Chem. Abs. 1982, 95, 132743.
- F. Collino and S. Volpe, *Boll. Chim. Farm.*, 1982, **121** (4), 167. *Chem. Abs.* 1982, **97**, 162889.
- H. Erdogan and N. Yulug, *Eczacilik Fak. Derg.* 1989, 9(1), 35. *Chem. Abs.* 1990, 112, 198187.
- A.H. Khuthier and M.A. Sheat, J. F. Prakt. Chemie. 1989, 2, 187.
- R.H. Udupi, Y.V. Shetti and A.R. Bhat. J. Inst. Chem. (India), 1998, 70 (4), 148. Chem. Abs. 1999, 130(12), 153634.
- G. Hallström and B. Lindeke. Act. Pharm. Suec., 1977, 14, 44.
- A. Wilson, H.O. Sclhd and W. Modell, "Applied Pharmacology", Churchill Livingstone, 11th ed. 1975, 133.
- 9. (a). A.H. Khuthier and F.T. Al-Abachi, Iraqi Patent, 1993, 2511.
- (b). Sh. Y. Mohmood, University of Mosul, M.Sc. Thesis, 1997.
- 10. M.A. Sheat, J. Ed. Sci., 2002, 14(4), 51.
- (a). M.A. Sheat and A.A. Dawood, *Raf. Jour. Sci.*, 2004, 15(2), 44.
- (b). M.A. Sheat and A.A. Dawood, *J.Ed. Sci.*, 2004, **16 (2)**, 9.
- (c). Z.F. Saeed, University of Mosul, M.Sc. Thesis, 2002.
- 12. P.M. Woster, "PHA 413-Immunology, Inflammatory, Diseases and Hematology", 2001, 656-673.
 (<u>http://www.wiz2.Pharm.Wayne,ed</u> u/module/pha413.html).
- 13. J.B. Conant and A.H. Blatt, "The Chemistry of Organic Compounds", Macmillan

Company, New York, 4th ed. 1982, 464.

- 14. Drug Profiles: "Acetaminophen or Tylenol for Migraines", 2001, 1-9 (<u>http://www.migranes.org/treatmen</u> <u>t/protyln.html</u>).
- TR-67, "Bioassay of a Mixture of Aspirin, Phenacetin, and Caffeine for Possible Carcinogeicity", 2001, (CAS No. 8003-03-0). (<u>http://ntpserver.niehs.gov/htdocs/LTstudies/TR067.html)</u>.
- R. Dahlbom, B. Karle'n, R. George and D.J. Jenden. *J. Med. Chem.* 1966, 9, 843.

.17

.1 13(2) 2002

.18

1.,14(1),2003

- Negrevergne, Georges. GerOffen.,
 2, 303, 521, 1973, *Chem. Abs.* 1974, 80, 3232.
- 20. P.R. Panditrao, S.D. Deval, S.M. Gupte, S.D.Samant and K.D. Deodhar., *Indian J.S. Chem.*, Sect. B, 1981, 20B (10), 929. *Chem. Abs.*, 1982, 96, 104042.
- J.S. Shukla and R. Rastogi, Indian Drugs, 1981, 18(4), 138. *Chem. Abs.*, 1981, **95**, 43007.
- B.Karlen, B. Lindeke, S. Lindgren, K-G. Svensson and R. Dahlbom.J. Med. Chem. 1970, 13, 651.
- 23. A.I. Vogel, "Text Book of Practical Organic Chemistry", Longman, London, 4th ed., 1972, 423.
- 24. P.R. Singh, D.S. Gupta and K.S. Bajpai, "Experimental Organic Chemistry", *Tata McGraw-Hill Publishing Company Limited*, New Delhi, 1980, I, 149.
- M.A. Bayoumi, M.El-Aasser and F. Abdel-Halim. J. Am. Chem. Soc., 1971, 93, 586.
- 26. V.M. Parikh, "Absorption Spectroscopy of Organic Molecules"

ترجمة :عبدالحسن شربة، جاسم الراوي ومحمد العراقي، مديرية مطبعة الجامعة، جامعة الموصل، 1985.

27. N.D. Cheronis and J.B. Entrikin, "Identification of Organic Compounds"

.1986

: