Synthesis and antibacterial activity of bis-oxadiazole derivatives

Ali Hussein Raheemah. Al-Daraji Department of Chemistry, College of Science, Al-Mustansiriya University

(NJC)

(Recevied on 18/12/2011)

(Accepted for publication 7/5/2012)

Abstract

New compounds containing two heterocyclic rings (1,2,4 and 1,3,4oxadiazole)in the same molecules have been synthesized through many reactions . Prepared of 1,2,4-oxadiazole derivatives (3) by refluxing the oxime compound (2) and ethyl *p*-methyl benzoate with sodium ethoxide for 48 hrs. Synthesized the 1,3,4oxadiazole derivatives (7_{a-1}) by reaction prepared hydrazide and many acids with phosphorus oxychloride (POCl₃). All the Synthesized compounds were characterized by melting points, FTIR and ¹H-NMR data. All the final compounds have been screened *in vitro* for their antibacterial activities against five types of bacteria [Grampositive(*S. aureus, S. cerevisiae* and *C. diphtheria*) and the Gram-negative(*E. coli* and *P. aeruginosa*)] in two concentration (100 and 200)µg/mL. The result showed considerable antibacterial activities against Gram-positive (G+), but did not show any antibacterial activities against Gram-negative (G-).

الخلاصة

حضرت مركبات تحتوي على حلقتين غير متجانسة (4,2,1 و 4,2,1–اوكسادايازول) في نفس الجزيئة من خلال عدة تفاعلات , حضر مشتق للمركب 4,2,1–اوكسادايازول (3) بواسطة التصعيد العكسي لمركب المركب الأوكسيم (2) ومركب الثيل4–مثيل بنزويت وبوجود ايثوكسيد الصوديوم ولمدة 48 ساعة . حضرت مشتقات للمركب 4,3,1–اوكسادايازول (1,-7) بواسطة تفاعل الهايدرازايد المحضر مسبقا مع عدة حوامض مشتقات للمركب 4,3,1–اوكسادايازول (1,-7) بواسطة تفاعل الهايدرازايد المحضر مسبقا مع عدة حوامض مشتقات للمركب 4,3,1–اوكسادايازول (1,-7) بواسطة تفاعل الهايدرازايد المحضر مسبقا مع عدة حوامض مشتقات للمركب 4,3,1–اوكسادايازول (1,-7) بواسطة تفاعل الهايدرازايد المحضر مسبقا مع عدة حوامض المركب المركب 5,1–اوكسادايازول (1,-7) بواسطة تفاعل الهايدرازايد المحضر مسبقا مع عدة حوامض المركب المركب 5,1,1–10 محسبة المحضرة شخصت بواسطة درجات انصهارها وبواسطة طيف وبوجود ثلاثي كلوريد الفسفوريل . جميع المركبات المحضرة شخصت بواسطة درجات انصهارها وبواسطة طيف الاشعة تحت الحمراء FTIR وطيف الرنين النووي المغناطيسي H-NMR . درست الفعالية البايولوجية لجميع المركبات المركبات النوبي المخاطيسي المركبات المحضرة مع معنا المركبات النهائية المحضرة (1,-7) خارج الجسم تجاه خمسة انواع من البكتريا , درست الفعالية البايولوجية لجميع المركبات النهائية المحضرة (1,-7) خارج الجسم تجاه خمسة انواع من البكتريا , درست الفعالية البايولوجية لجميع المركبات النهائية المحضرة (1,-7) خارج الجسم تجاه خمسة انواع من البكتريا , درست الفعالية البايولوجية لمسيع المركبات النهائية المحضرة (1,-7) خارج الجسم تجاه خمسة انواع من البكتريا , درست الفعالية البايولوجية جيدا محسة المركبات النهائية المحضرة (1,-7) خارج الجسم تجاه خمسة انواع من البكتريا من النوع (2,-7) وكال مركال من النوع مروبي ألم مركبات المركبات المركبات المولوجية جيدة ضد البكتريا مركال معام مروبي مركبات المركبات النهائية المحضرة (1,-7) خارج مروبي تجاه خمسة انواع من البكتريا , 200 مركال من النوع مروبي ألم مركبا مر المواحي مروبية جيدة ضد البكتريل من النوع (1,-7) خارج الحسام مروبية جيدة ضد البكتريل من النوع (1,-7) مركبا مركبا مرالم مركبا مر النوع الآخر (-6) مركبا مركبا مركبا مرالما مركبا مر النوع الآخر (-6) مركبا مركبا مر النوع الوخر مركال مركبا مر المورح الكربا مركبا مركبام

Introduction

Since their introduction, antimicrobials are one of most significant weapons in fighting bacterial infections. They have extremely benefited the health-related quality of human life. Over the past few decades, these health benefits are under threat as many commonly used antibiotics have become less effective against certain illnesses because of their toxic reactions and due to emergence of microbial resistance. Therefore, it is essential to investigate newer drugs with lower resistance.

There are four possible isomers of oxadiazole depending on the position of nitrogen atom in the ring out of these 1,3,4-oxadiazoles are found to be most potent biologically.

The development of new antimicrobial agents will remain an important task for medicinal challenging chemists. There are two basic approaches to develop a new drug: (a) synthesis of analogues, modifications or derivatives of existing compounds for shortening and improving treatment and (b) searching for novel structures, that the bacteria has never been presented before. To pursue this goal, our research efforts are directed to synthesize new pharmacophores. Substituted oxadiazoles are of considerable pharmaceutical importance, which is documented by several numbers of publications and patents. A large number of drugs used clinically have oxadiazole ring as a structural building block.

Literature survey reveals that particularly 1, 3, 4-oxadiazole derivatives exhibit wide range of biological activities including anticancer ^[1], anti-inflammatory ^[2], fungicidal^[3], herbicidal^[4], pesticidal, analgesic ^[5], anticonvulsant ^[6], anti-HIV ^[7], antibacterial and plant growth regulator activities ^[8]. According to these observations, in the design of new bioactive compounds. the development of hybrid molecules through the combination of different pharmacophores in one frame may lead compounds with interesting to biological profiles. In the present study, prompted by these observations, synthesis and antimicrobial the screening of new 1,2,4- and 1,3,4oxadiazole derivatives in the same molecules incorporating different pharmacophores as hybrid molecules possessing antimicrobial activity were aimed.

Experimental

Materials and physical measurements

All starting materials and solvents were purchased from Aldrich and Fluka and used without further Melting points purification. were determined on Electrothermal capillary apparatus and are uncorrected, FT-IR measurements were recorded on Shimadzu model FT-IR-8400S in of Al-Mustanseriya university department of chemistry, college of science, Baghdad, Iraq. ¹H-NMR spectra were obtained with Bruker spectrophotometer model ultra shield at 300 MHz. in university of Ahl-Jordan. albait. Amman, The compounds dissolved in DMSO-d₆ solution with TMS as internal standard. Note: in some ¹H-NMR spectra, the peaks at δ 2.5 and 3.35 are for the solvent $(DMSO-d_6)$ and dissolved water in $(DMSO-d_6)$ respectively.

Preparation methods and physical data of the synthesized compounds $1-7_{(a-1)}$

All compounds $(1, 2, 3, 4, 5, 6, and 7_{a-1})$ were synthesized according to the procedures previously described by I. H. R. tomi^[9].

4-Butoxybenzonitrile (1)

A mixture of (10.36 g, 87 mmol) of 4cyanophenol, (4.88 g, 87 mmol) potassium hydroxide and (50 ml) of absolute ethanol was heated at reflux for several minutes. Then (13.95 ml, 130 mmol) n-butyl bromide was added dropwise and the reaction mixture was refluxed for 72 hr. After cooling, the potassium bromide was precipitate then (50 ml) of water, (50 ml) of diethyl ether were added. The mixture was extracted and the organic layer washed with (25 ml) of water and (25 ml) of 10% sodium hydroxide solution then (25 ml) of water, dried the organic layer over anhydrous magnesium sulfate overnight. After filtration and evaporation the solvent, the oil residue was contained yield (95%); FT-IR (film, cm⁻¹) 2960, 2874 (C_{sp3}-H), 2224 (C≡N), 1606, 1508 (C_{sp2}-H), 1259, 1172 (C-O-C).

4-Butoxybenzamidoxime (2)

A mixture of (23.5 g, 134 mmol) of nitrile (1), (10.0 g, 144 mmol) of hydroxyl amine hydrochloride, (6g) sodium hydroxide in (200 ml) ethanol with (50 ml) water was stirred for 24 hrs at refluxed, then concentrated the mixture in vacuum. The residue was placed in (500 ml) of cold water, filtered, washed with water and dried. The product was purified by washing it with n-hexane. Yield (85%); mp 100-102°C; FT-IR (KBr disk, cm⁻¹) 3441, 3350 (N-H), 3174 (O-H), 1647 (C=N); ¹H-NMR (DMSO-d₆, 300 MHz, δ) 0.92 (t, 3H, lateral CH₃), 1.44 (m, 2H, CH₃-CH₂-CH₂-), 1.69 (m, 2H, -CH₂-<u>CH</u>₂-CH₂O-), 3.95 (t, 2H, -CH₂O-), 5.70 (s, 2H, NH₂), 6.90 (d, 2H, 2 arom. H), 7.58 (d, 2H, 2 arom. H), 9.43 (s, 1H. OH of the amidoxime group). 3-(4-Butoxyphenyl)-5-(4-

methylphenyl)-1,2,4-oxadiazole (3)

This compound was synthesized according to the procedure previously described by M. Parra, ^[12]. A mixture of (2.7 g, 13 mmol) amidoxime (**2**) and (4.1 g, 25 mmol) of ethyl 4-

methylbenzoate dissolved in sodium ethoxide solution (prepared from dissolving 0.32 g, 14 mmol of sodium metal in (27 ml) of absolute ethanol), then the reaction mixture was heated under reflux for 48 hrs. After the mixture was cooled, off white crystals were collected by filtration and dried. The crystals were recrystallized from ethanol. Yield (68%); mp 112°C; FT-IR (KBr disk, cm⁻¹) 2943, 2852 (C_{sp3}-H), 1610 (C=N), 1591 (C=C), 1248, 1178 (C-O-C), 924 (N-O); ¹H NMR (DMSO-d₆, 300 MHz, δ) 0.95 (t, 3H, lateral CH₃), 1.46 (m, 2H, CH₃-CH₂-CH₂-), 1.73 (m, 2H, -CH₂-CH₂-CH₂O-), 2.42 (s, 3H, $-C_6H_4$ -CH₃), 4.07 (t, 2H, -CH₂O-), 7.15 (d, 2H, 2 arom. H of – C_6H_4 - linked to methyl group), 7.46 (d, 2H, 2 arom. H of -C₆H₄- linked to methyl group), 7.98 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group), 8.09 (d, 2H, 2 arom. H of -C₆H₄linked to butoxy group).

3-(4-Butoxyphenyl)-5-(4-

carboxyphenyl)-1,2,4-oxadiazole (4)

To a stirred solution of (0.77 g, 2.5 mmol) of compound (3) in (16 ml) pyridine and (11 ml) water at 70°C, (3.33 g, 21 mmol)of potassium permanganate was added portionwise. Then the mixture was heated under reflux for 6 hrs. The solvents were evaporated in vacuum, then (35 ml) of water was added to the mixture and filtered. The acid (4) was precipitated by acidification the aqueous solution (2M HCl). It was filtered under vacuum, washed with water and dried at 100°C. Yield (82%); mp > 300°C; FT-IR (KBr disk, cm^{-1}) 3100 – 2544 (carboxylic O-H), 2960, 2874 (C_{sp3}-H), 1697 (C=O), 1608 (C=N), 1589 (C=C), 1249, 1176 (C-O-C), 931 (N-O); ¹H NMR (DMSO-d₆, 300 MHz, δ) 0.96 (t, 3H, lateral CH₃), 1.49 (m, 2H, CH₃-<u>CH</u>₂-CH₂-), 1.77 (m, 2H, -CH₂-<u>C</u>H₂-CH₂O-), 4.09 (t, 2H, -CH₂O-), 7.17 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to carboxy group), 8.05 (d, 2H, 2 arom. H

of $-C_6H_4$ - linked to carboxy group), 8.18 (d, 2H, 2 arom. H of $-C_6H_4$ linked to butoxy group), 8.28 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group), 13.4 (s, 1H, very week and broad COOH).

3-(4-Butoxyphenyl)-5-(4-Ethoxycarbonylphenyl)-1,2,4oxadiazole (5)

As a general method, a solution of (3.2)g, 9.47 mmol) of compound (4) and (0.11 ml) of H₂SO₄ in (50 ml) absolute ethanol were heating under reflux for 72 hrs. After hot solution was filtered and evaporated the solvent, the crude ester was precipitated. The white crystal of ester was washed with 10% of NaHCO₃ solution then with water. After dried, we purified it by recrystalization from ethyl acetate. Yield (80%); mp 242°C; FT-IR (KBr disk, cm⁻¹) 2962, 2872 (C_{sp3}-H), 1726 (C=O), 1610 (C=N), 1591 (C=C), 1249, 1172 (C-O-C), 904 (N-O); ¹H-NMR (DMSO-d₆, 300 MHz, δ) 0.94 (t, 3H, lateral CH₃), 1.35 (t, 3H, O-CO-CH₂-CH₃), 1.45 (m, 2H, CH₃-CH₂-CH₂-), 1.72 (m, 2H, -CH₂-CH₂-CH₂O-), 4.06 (t, 2H, -CH₂O-), 4.37 (q, 2H, -O-CO-CH₂CH₃), 7.14 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to ester group), 8.02 (d, 2H, 2 arom. H of -C₆H₄linked to ester group), 8.19 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group), 8.30 (d, 2H, 2 arom. H of -C₆H₄- linked to butoxy group).

3-(4-Butoxyphenyl)-5-(4-

benzoylhydrazine)-1,2,4-oxadiazole (6)

Hydrazine hydrate (2.5 g, 50 mmol) was added to a solution of compound (5), (3.66 g, 10 mmol) in ethanol (25 ml). The reaction mixture was heated under reflux for 48 hrs, concentrated in vacuum, the precipitate obtained was filtered, washed with cold water, dried and recrystalized from ethanol. Yield (79%); mp 220°C (decom.); FT-IR (KBr disk, cm⁻¹) 3282 (N-H), 3205, 3160 (NH₂), 2955, 2872 (C_{sp3}-H), 1635

(C=O), 1612 (C=N), 1585 (C=C), 1247, 1172 (C-O-C), 902 (N-O); ¹H-NMR (DMSO-d₆, 300 MHz, δ) 0.91 (t, 3H, lateral CH₃); 1.43 (m, 2H, CH₃-<u>C</u>H₂-CH₂-); 1.74 (m, 2H, -CH₂-<u>C</u>H₂-CH₂O-); 4.05 (t, 2H, -CH₂O-); 4.62 (s, 2H, NH₂); 7.13 (d, 2H, 2 arom. H of – C₆H₄- linked to hydrazide group); 8.01 (d, 2H, 2 arom. H of –C₆H₄- linked to hydrazide group); 8.08 (d, 2H, 2 arom. H of –C₆H₄- linked to butoxy group); 8.25 (d, 2H, 2 arom. H of –C₆H₄linked to butoxy group); 10.07 (s, 1H, N-H).

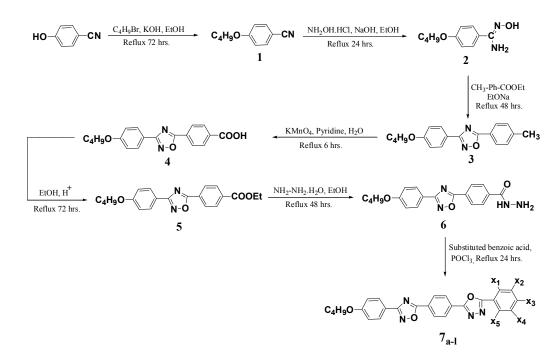
1-[3-(4-Butoxyphenyl)-1,2,4oxadiazole-5-yl]-4-[5-(nsubstitutedphenyl)-1,3,4-

oxadiazole-2-yl]-benzene 7_(a-l)

A mixture (0.7 g, 2 mmol) of compound (6) and (2 mmol) of appropriate n-substituted benzoic acid in (5 ml) of phosphorous oxychloride was heated gently under reflux for 24 hrs. The paste white residue was poured into ice water and made the mixture basic by adding (10 g) sodium bicarbonate in (50 ml) water. The resulting off white powder was filtered, dried and recrystalized from chloroform to give the desired product. Yield (60-65%).

Data for 1-[3-(4-Butoxyphenyl)-1,2,4oxadiazole-5-yl]-4-[5-(4-nitrophenyl)-

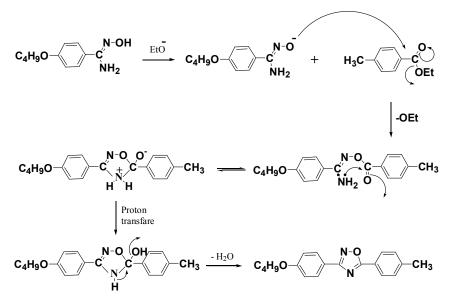
1,3,4-oxadiazole-2-yl]-benzene (7)_c. FT-IR (KBr disk, cm⁻¹) 2972, 2866 (C_{sp3}-H), 1618 (C=N of 1,2,4oxadiazole ring), 1602 (C=N of 1,3,4oxadiazole ring), 1581 (C=C), 1246, 1168 (C-O-C), 901 (N-O of 1,2,4oxadiazole ring); ¹H-NMR (DMSO-d₆, 300 MHz, δ) 1.05 (t, 3H, lateral CH₃); 1.43 (m, 2H, CH₃-CH₂-CH₂-); 1.70 (m, 2H, -CH₂-CH₂-CH₂O-); 3.85 (s, 3H, lateral CH₃O); 4.05 (t, 2H, -CH₂O-); 7.11 (d, 2H, 2 arom. H of -C₆H₄linked to methoxy group); 7.19 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to methoxy group); 8.04 (d, 2H, 2 arom. H of - C_6H_4 - linked to butoxy group); 8.15 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group); 8.39 (s, 4H, 4 arom H of $-C_6H_4$ - between 1,2,4- and 1,3,4- oxadiazole rings).


Data for 1-[3-(4-Butoxyphenyl)-1,2,4oxadiazole-5-yl]-4-[5-(4-

methoxyphenyl)-1,3,4- oxadiazole-2yl]-benzene (7)_e. FT-IR (KBr disk, cm⁻¹) 2960, 2872 (C_{sp3} -H), 1612 (C=N of 1,2,4-oxadiazole ring), 1595 (C=N of 1,3,4-oxadiazole ring), 1580 (C=C), 1251, 1174 (C-O-C), 906 (N-O); ¹H-NMR (DMSO-d₆, 300 MHz, δ) 0.94 (t, 3H, lateral CH₃); 1.45 (m, 2H, CH₃-<u>CH₂-CH₂-); 1.68 (m, 2H, -CH₂-<u>C</u>H₂-CH₂O-); 4.02(t, 2H, -CH₂O-); 7.14 (d,</u> 2H, 2 arom. H of $-C_6H_4$ - linked to nitro group); 7.99 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to nitro group); 8.09 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group); 8.33 (d, 2H, 2 arom. H of $-C_6H_4$ - linked to butoxy group); 8.41 (s, 4H, 4 arom H of $-C_6H_4$ between 1,2,4- and 1,3,4- oxadiazole rings).

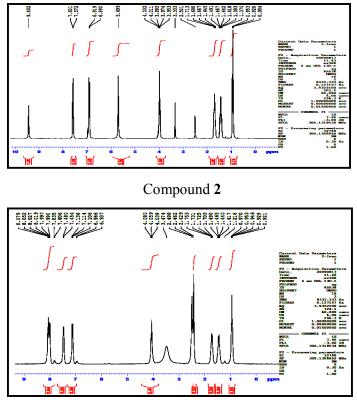
Results and Discussion

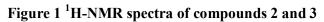
Synthesis


The synthesis of compounds $7_{(a-j)}$ is outlined in scheme 1.

Scheme 1 Synthetic route of compounds 1-7(a-1)

All the newly synthesized compounds gave satisfactory analysis for the proposed structures, which were confirmed on the basis of their spectral (FT-IR and ¹H-NMR) data.


The bis-oxadiazoles compounds $(7)_{a-1}$ were synthesized starting with an alkylation reaction of 4hydroxybenzonitrile with 1bromobutane in ethanolic solution of potassium hydroxide to give the 4butyloxybenzonitrile (1). The reaction of compound (1) with hydroxylamine hydrochloride was yielded the corresponding amidoxime (2). This compound (2) was reacted with ethyl 4-methylbenzoate in sodium ethoxide solution leading to the formation of 1,2,4-oxadiazole compound (3)^[12]. The suggestion mechanism of this reaction may be outlined as follows in scheme 2.


Scheme 2 The mechanism steps of formation of compound 3.

acid compound of 1,2,4-The oxadiazole(4) was obtained by the standard procedures of oxidation reaction of compound (3) by potassium permanganate in pyridine and water. Then, esterification of the acid compound (4) by general method yielding the ester compound of 1,2,4oxadiazole (5). The reaction between the ester (5) and hydrazine hydrate 80% in ethanol leading to formation the hydrazide of 1,2,4-oxadiazole (6). The condensation reaction of hydrazide (6) with appropriate 4alkoxybenzoic acid in phosphorousoxy chloride leads to the bis-(1,2,4- and 1,3,4-)oxadiazole compounds $(7)_{a-l}$. The mechanism steps of the ring closer of 1,3,4-oxadiazole described by Tomi et al., ^[9].

Figure 1, 2 and 3 showed the ¹H-NMR spectra of compounds **2-6**, 7_c and 7_e respectively, Table 1 and Table 2 showed the physical properties and FT IR data of all compounds $(7)_{a-1}$ respectively.

Compound 3

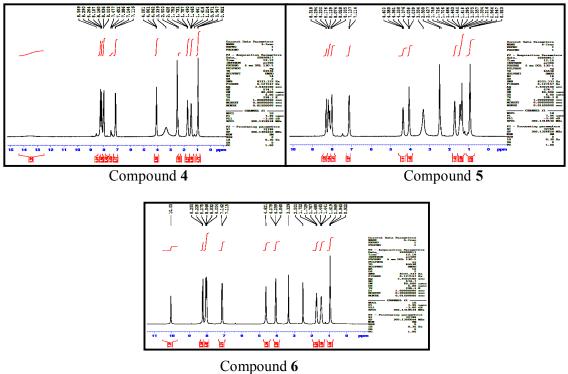
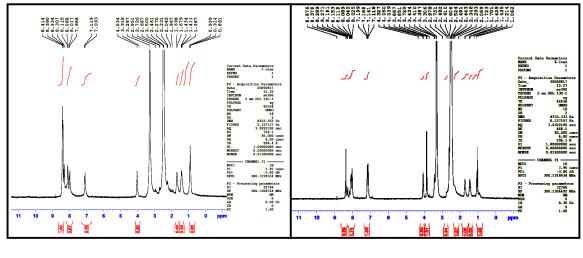



Figure 2¹H-NMR spectra of compounds 4, 5 and 6

Compound 7_c

Compound 7_e

Figure 3 ¹ H-NMR	spectra of compounds 7 _c and 7 _e

Comp.	Substituents	Mol. Formula /	Yields%	Mp °C
7a	$X_1 = X_2 = X_3 = X_4 = X_5 = H$	$C_{26}H_{22}N_4O_3$	53	275-281
7b	X ₁ =X ₂ =X ₄ =X ₅ =H, X ₃ =CH ₃	$C_{27}H_{24}N_4O_3$	55	300
7c	$X_1 = X_2 = X_4 = X_5 = H, X_3 = NO_2$	$C_{26}H_{21}N_5O_5$	55	>300
7d	$X_1 = X_2 = X_4 = X_5 = H, X_3 = Cl$	$C_{26}H_{21}ClN_4O_3$	62	>300
7e	X ₁ =X ₂ =X ₄ =X ₅ =H, X ₃ =OCH ₃	$C_{27}H_{25}N_4O_4$	40	298-300
7f	X ₁ =X ₃ =X ₄ =X ₅ =H, X ₂ =NO ₂	$C_{26}H_{21}N_5O_5$	65	290-297
7g	$X_1 = X_3 = X_4 = X_5 = H, X_2 = Cl$	$C_{26}H_{21}ClN_4O_3$	65	285-290
7h	X ₂ =X ₃ =X ₄ =X ₅ =H, X ₁ =NO ₂	$C_{26}H_{21}N_5O_5$	45	290-294
7i	X ₂ =X ₃ =X ₄ =X ₅ =H, X ₁ =Cl	$C_{26}H_{21}ClN_4O_3$	65	297-306
7j	X ₂ = X ₄ =X ₅ =H, X ₁ =X ₃ =OCH ₃	$C_{28}H_{27}N_4O_5$	40	280-288
7k	X ₂ = X ₃ =X ₅ =H, X ₁ =X ₄ =OCH ₃	$C_{28}H_{27}N_4O_5$	55	>300
71	X ₂ = X ₃ =X ₅ =H, X ₁ =X ₄ =NO ₂	$C_{26}H_{20}N_6O_7$	60	>300

Table 1Some physical properties of compounds 7_{a-l}

Com p	υ C= <u>C-H</u> CH aromatic(sp2)	υ C- <u>C-H</u> CH aliphatic(sp3)	vC=N oxadiazole	vC=C	vC-O-C asym sym.	υNO ₂ asym sym.
7a	3061	2954 , 2929	1602	1583	1258-1140	-
7b	3034	2924 , 2867	1608	1585	1266-1135	-
7c	3080	2972,2866	1618	1590	1246-1168	1525 , 1344
7d	3077	2936 , 2890	1612	1588	1250-1152	-
7e	3085	2935,2875	1610	1586	1251-1174	-
7f	3070	2966 , 2881	1608	1590	1265-1126	1533, 1350
7g	3091	2926 , 2854	1600	1582	1253-1166	-
7h	3045	2958, 2902	1605	1586	1244-1118	1520, 1345
7i	3092	2955 , 2928	1600	1580	1246-1177	-
7j	3065	2938 , 2880	1605	1580	1250-1150	-
7k	3075	2955,2870	1609	1586	1268-1145	-
71	3062	2947 , 2868	1611	1588	1250-1161	1530, 1352

Table 2 FT IR data of compounds 7_{a-l}

Biological properties

To determine the antibacterial activity of these compounds, the filter paper disc technique ^[13, 14] at two disc technique concentrations (50 and 100 ppm) was carried out using ampicillin and streptomycin as the reference antibiotics. Dimethylsulphoxide (DMSO) was used as solvent control. The prepared compounds were screened for their antibacterial activity against Escherichia coli (Ec),Staphylococcus aureus (Sa), Klebsiella pneumoniae (Kp) and Bacillus substilis

(*Bs*), the test results presented in Table 3.

c 1		Zone of inhibition (in mm)*					
Compounds No.	Concentration (µg/ml)	Gram-positive (G+)			Gram-negative (G-)		
110.		S. aureus	S.cerevisiae	C.diphtheria	E. coli	P.aeruginosa	
7 _a	100	16	22	20	-	-	
	200		23	21	7	7	
7 _b	100	19	19	20	-	-	
	200	18	22	23	8	8	
7	100	20	22	20	-	-	
7 _c	200	19	23	22	9	8	
7	100	19	19	21	-	-	
7_{d}	200	22	24	22	9	9	
7	100	22	21	21	-	-	
7 _e	200	21	24	23	7	9	
7	100	22	19	24	-	-	
7_{f}	200	24	22	22	7	9	
$7_{ m g}$	100	19	20	21	-	-	
	200	20	22	22	7	8	
7_{h}	100	20	19	22	-	-	
	200	23	22	24	9	10	
7 _i	100	24	23	24	-	-	
	200	22	21	22	8	9	
7 _j	100	20	20	24	-	-	
	200	22	23	23	9	10	
7 _k	100	23	20	18	-	-	
	200	22	21	20	11	10	
7 ₁	100	22	20	16	-	-	
	200	24	20	18	11	11	
Ampicillin Trihydrate	50	26	23	38	38	21	
DMSO	-	0	0	0	0	0	

Table 3 Effect of new bis-oxadiazole on the growth of tested bacteria

*Diameter of the hole was 6mm

The compounds tested displayed good activity toward the Gram-positive bacteria, but were less active against Gram-negative.

References

- V. KR.Sahu, A. K. Singh, D. Yadav. *International Journal of ChemTech Research*, 2011, 3, (3), 1362-1372.
- D. Dewangan1, A. Pandey1, T.Sivakum, R.Rajavel, R. D. Dubey. *International Journal of ChemTech Research*, 2010, 2,(3), 1397-1412.
- J.Q. Weng, X. H. Liu, H. Huang, C.X. Tan, J. Chen. *Molecules*, 2012, 17, 989-1001.
- K. K. Oza, H. S. Patel. Bulgarian Chemical Communications, 2010, 42, (2), 103–106.
- 5. A. Husain, M. ajmal. Acta *Pharm*, 2009, **59**, 223–233.
- A. Almasirad, N. Vousooghi, S. A. Tabatabai, A. Kebriaeezadeh, A. Shafiee. *Acta Chim. Slov*, 2007, 54, 317–324.
- A.A. El-Emam, O.A. Al-Deeb, M.Al-Omar, J.Lehmann. *Bioorganic & Medicinal Chemistry*, 2004, 12, 5107–5113.
- M. A. Al-Omar. *Molecules*, 2010, 15, 502-514.
- **9.** I.H.R. Tomi. Synthesis, characterization and comparative study of mesomorphic properties of some new compounds containing both 1,2,4- and 1,3,4-oxadiazole moieties linked the in same molecule. Journal of Saudi Chemical Society, 2011, in press.

- H. Gallardo, I.M. Begnini. Mol. Cryst. Liq. Cryst, 1995, 258, 85.
- L.A. Karamysheva, S.I. Torgova, I.F. Agafonova, R.CH. *Mol. Cryst. Liq. Cryst.*, 1994, 4, 289.
- M. Parra, J. Hidalgo, J. Alderete. *Liq. Cryst.*, 2005, 32, 449.
- 13. A. Singh, V. KR. Sahu, D. Yadav. *International Journal of Pharma Sciences and Research*, 2011, 2,(6), 135-147.
- 14. A. N. Mayekar, H. S. Yathirajan, B. Narayana, B. K. Sarojini, N. S. Kumari. *International Journal of Chemistry*, 2011, 2(1), 38-54.
- 15. A. W. Ricardo, F. Neves, A. V. Andre, S. Ricardo, M. S. Rajendra, G. Hugo. Synthesis of new lightemitting liquid crystals containing 1,2,4- and 1,3,4oxadiazoles 13th rings. Brazilian meeting on Synthesis, 31 organig August-4, September, 2009.