Effect of Nioxim on the Activity of Inhibited AChE

Mahamood S. Abdul-Husain Foundation of Technical Education, Baghdad, Iraq Redha I. Al-Bayati, and Raad K. Muslih Department of Chemistry, College of Science, Al-Mustanseririyah University, Iraq

Acknowledgements : These compounds were gifts from Dr. Ameer Atoo.

(NJC)

(Recevied on 28/6/2010)

(

(Accepted for publication 29/11/2010)

Abstract

This study is designed to show the effects of Nioxim on the activity of inhibited AChE by heterocyclic compounds in sera. The results obtained showed that both Oxime causes decrease in percentage of inhibit ion. The mechanism of action of the Oxime as reactivators to inhibited AChE activity were suggested which attributed to the ability of this compound to attack the thion group of the inhibited enzyme (enzyme-inhibitor complex) by the nucleophilic oxygen atom and then liberate the free enzyme.

)

Introduction

Cholinesterase is one of many important enzymes needed for the proper functioning of the nervous systems of humans, other vertebrates, and insects ^[1].

This enzyme works on the "synapses" which is an electrical switching centers found throughout the nervous system of humans, other vertebrates, and insects. Muscles, glands, and nerve fibres called "neruons" are stimulated or inhibited by constant firing of signals across these synapses ^[2].

Stimulating signals are usually carried by a chemical called "acetyl choline". Stimulating signals are discontinued by a specific type of cholinesterase enzyme, acetylcholinesterase, which breaks down the acetylcholine. These important chemical reactions are usually going on all the time at a very fast rate, with acetylcholine causing stimulation and acetyl cholinesterase ending the signal. If cholinesteraseaffecting insecticides are present in the synapses, however, this situation is thrown out of balance. Acetylcholine can then build up, causing a "jam" in the nervous system. Thus, when a

person receives to great an exposure to cholinesterase inhibiting compounds, the body is unable to break down the acetylcholine ^[3].

Organ phosphorous (OP's) compounds inhibit AChE irreversibly by forming phosphorylated serine (phosphorylated enzyme) in the esteratic site of AChE; regeneration of this site by spontaneous hydrolysis of the complex is very slow.

The enzyme- phosphate ester complexes formed from the action of OP's on AChE are hydrolyzed only slowly, producing prolonged inhibition^[4].

It is possible to reactivate the enzyme by several compounds given soon after the AChE phosphorylation due to poisoning by these substances^[5].

Experimental

One Oxime was selected to test its reactivation effets on the activity of inhibited AChE by heterocyclic compounds. The solubility this compound was tested in sodium phosphate buffer (0.2 M, pH= 7.3) which was used in enzyme activity determination.

The compound was chosen namely Nioxim(1,2-cyclohexanediondioxime.

M.wt = 142.-16

Procedure:

A stock solution (0.1 M)concentration of Nioxim was prepared and then the following concentrations (0.5,1,2,3,4, 5) X 10^{-3} M were prepared. $(1X10^{-4}\text{M})$ concentration of all inhibitors was selected lo determine the enzyme activity with and without the inhibitor and under the same conditions as follows:

(50 µl) of DTNB solution (0.001 M) was added to 2.25 ml of phosphate buffer solution (l ml of inhibitor mixed with 1.25 ml of buffer (pH=7.3, 0.2M)), then (10 µl) of serum was added, mixed well and (2 ml) of the mixture was transferred lo a measuring cell (3 mm), finally (34 µl) of ASChI (0.06M) was added, the change in absorbency was measured before and after adding the substrate at

(430 inn) for (3 min). After that the enzyme activity was determined in the presence of inhibitor and possible reactivator (1.25 ml buffer mixed with 0.75 ml of possible reactivator). The method described in above was followed for the measurement of the activity of enzyme.

Comp. No.	Structure	Name	Mwt.
1	O ₂ N O CH=N CH ₃	5-(p-methyl phenyl)-3-[5'- nitro-2'-furyl] methylamino]- l,3,4-thiodiozole	314
2	O ₂ N O CH=CH-CH N S	5-(o-nitro phenyl)- 3-[3(5'-nilro-2'- furyl)Prop-2- enylidene amino)]-1 ,2J,4- thiodizole	326
3	H ₂ N N SH N N CH O NO ₂	5-Amino-2- mcrcapto -4-[5'- nilro-2'- furyl)methylcne amino)]-4H-1,2,4- triazole	254
4	O ₂ N O CH=N N HS	3-Mercapto -5-(p- N0 ₂ phenyl)-4H- 1,2,4-triazole	238
5	H ₂ N N SH N NO ₂	5-Amino-3- mercapto -4- [3- (5'-nitro-2- furyl)Prop-2- methylene amino)]-4H-1,2,4- triazole	219
6	H ₂ N N OH NO ₂	5-Amino-3- hydroxy -4-[3'- (5'-nitro-2- furyl)Prop-2- enylidene amino)]-4H- 1,2,4-triazole	264
7	O ₂ N O CH=CH-CH-N SH	3-Mercapto-4- phenyl -5-[3-(5- nitro-2'- furyl)Prop-2- enylidene) amino]-4H-1,2,4- triazole	341

Table 1-: Heterocyclic Compounds used for interaction with AChE

8	O ₂ N O CH=CH-CH N O CH-CH NO ₂	Tri[3(5-nitro-2'- furyl) Prop-2- enylidene) amino]-4H-1,2,4- triazole	574
9	O_2N O $CH = CH$ N N NH	3-phenyl -6-[5'- nitro-2'-furyl) ethyl]-1,2,4- triazolc[3,4,6],[1,3 ,4] thiodiazole	339
10		4-Amino- 1 ,2,4- Triazole	84
11	Ph N Ph NH ₂	3,5-diphenyl-4- amino-1,2,4- triazolc	236
12	H ₃ C-O-SNH ₂	2-(amino-5-(p- mcthoxy phenyl)1,3,4- thiadiazole	206
13		2-(amino-5-thio benzoyloxy-1,3,4- thiadiazole	237
14		5-Nitrofurylidene - N-p-N0 ₂ -benzoic acid hydrizde	304
15	O2N O CH NHC OCH3	5-Nilrofurylidcne- N-p-methoxy- benzoic acid hydrizde	289

Results and Discussion

Acetylcholinesterase can be reactivated by many substances which have the ability to reactivate it and some are used as organophosphorous antidotes, like obidoxime chloride and pralidoxime, others are also available like diacetylmonoxime and trimedoxime bromide. In the present study, the compounds tested to reactivate the enzyme is Nioxim contain nucleophilic groups more than other oximes, to reactivate the inhibited AChE by heterocyclic compounds in human serum.

Various concentrations of Nioxim $(0.5-5)x \ 10^{-3}$ M were used with a fixed concentration $(1x \ 10^{-4}M)$ of inhibitors as shown in tables (2-4)

All concentrations which used causes decrease in the inhibition percentage of the inhibited AChE activity, the degree of reactivation increased with the increased concentration of Nioxim until maximum reactivation was reached. The behavior of AChE activity in the presence of inhibitors and Nioxim of various concentrations are shown in figures (1 and 2).

The influence of Nioxim as reactivater is mainly attributed to the ability of Nioxim to attack the active groups of the inhibited enzyme (enzyme- inhibitor complex) by the nucleophilic oxygen atom and then liberate the free enzyme according to the proposed mechanism shown in scheme (1 and 2).

Compound (1)					
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]		
Nil	5.500	0	100		
0	1.125	79.545	20.455		
5x10 ⁻⁴	5.075	39.091	60.909		
1x10 ⁻³	4.675	35.909	64.091		
$2x10^{-3}$	4.325	27.723	72.273		
3x10 ⁻³	3.975	21.364	78.636		
4x10 ⁻³	3.525	15.000	85.000		
5x10 ⁻³	3.350	7.723	92.273		
	Con	npound (2)			
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]		
Nil	5.175	0	100		
0	1.350	73.913	26.087		
5x10 ⁻⁴	3.350	35.266	64.734		
1x10 ⁻³	3.600	30.435	69.565		
$2x10^{-3}$	3.875	25.121	74.879		
3x10 ⁻³	4.175	19.324	80.676		
4x10 ⁻³	4.325	16.425	83.575		
$5x10^{-3}$	4.500	13.043	86.957		
	Con	anound (3)			
Ovime Cone [M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]		
Nil	5 925				
	1 800	69.620	30.380		
5v10 ⁻⁴	16.878	37 121	62,860		
1x10 ⁻³	24 473	31.646	68 354		
$\frac{1110}{2\times10^{-3}}$	24.473	20.536	70.464		
$\frac{2x10}{3x10^{-3}}$	27.004	29.550	72.996		
$\frac{3 \times 10}{4 \times 10^{-3}}$	29.530	27.004	75.527		
5x10 ⁻³	27 121	16.878	83 122		
5410	Com	nound (4)	05.122		
Ovime Cone [M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]		
Nil	5 200				
	-1.075	70.327	20.673		
5v10 ⁻⁴	-1.075	32.602	67 308		
1x10 ⁻³	3.700	28.846	71 154		
$\frac{1 \times 10}{2 \times 10^{-3}}$	3.700	28.840	75.841		
$\frac{2 \times 10}{3 \times 10^{-3}}$	3.925 4.245	18 365	21 62 <i>A</i>		
<u> </u>	4.243	13.042	81.034		
4x10 5x10 ⁻³	4.473	11.529	80.038		
5X10	4.000	11.330	88.402		
Compored (5)					
Compound (5)					
Nil					
	1.275	82 474	17.526		
5v10 ⁻⁴	3 500	51 800	48 110		
3A10 1v10 ⁻³	2 800	J1.090 17 766	40.110 52.224		
1X10 2v10 ⁻³	3.000	4/./00	57 200		
2×10-3	4.1/3	42.012	<i>51.300</i> <i>62.542</i>		
JAIU Av10-3	4.330	22 677	66 2 2 2		
4×10 5×10-3	4.023	33.0//	72 165		
5X10	3.230	27.033	/2.103		

Table (2) Effect of different concentrations of Nioxime on the activity ofinhibited AChE by compounds (1) to (5).

Compound (6)					
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]		
Nil	5.525	0	100		
0	1.650	70.136	29.964		
5x10 ⁻⁴	3.375	38.914	61.086		
1x10 ⁻³	3.550	35.747	64.253		
$2x10^{-3}$	4.175	24.434	75.566		
3x10 ⁻³	4.525	18.100	81.900		
4x10 ⁻³	4.825	12.670	87.330		
5x10 ⁻³	5.25	4.977	95.023		
	Compound (7)				
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	Activity Recovered [%]		
Nil	6.500	0	100		
0	1.425	78.077	21.923		
5x10 ⁻⁴	3.575	45.000	55.000		
1x10 ⁻³	3.775	41.923	58.077		
$2x10^{-3}$	4.175	35.769	64.231		
3x10 ⁻³	4.675	28.077	71.923		
4x10 ⁻³	5.325	18.077	81.823		
5x10 ⁻³	6.150	5.385	94.615		
Compound (8)					
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	Activity Recovered[%]		
Nil	6.150	0	100		
0	1.350	78.049	21.951		
5x10 ⁻⁴	4.100		66.667		
1×10^{-3}	4.325	29.675	70.325		
$2x10^{-3}$	4.550	26.016	73.984		
$3x10^{-3}$	4.725	23.171	76.829		
$4x10^{-3}$	4.950	19.512	80.488		
5x10 ⁻³	5.425	11.789	88.211		
	Compound (9)			
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	Activity Recovered[%]		
Nil	7.275	0	100		
0	1.450	80.069	19.931		
5x10 ⁻⁴	5x10 ⁻⁴	36.082	63.918		
1x10 ⁻³	1x10 ⁻³	32.646	67.354		
$2x10^{-3}$	2x10 ⁻³	29.553	70.447		
3x10 ⁻³	3x10 ⁻³	22.337	77.663		
4x10 ⁻³	4x10 ⁻³	15.464	84.536		
5x10 ⁻³	$5x10^{-3}$	9.622	90.378		
Compound (10)					
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	Activity Recovered[%]		
Nil	6.750	0	100		
0	1.425	78.889	21.111		
5x10 ⁻⁴	4.550	32.593	67.407		
1x10 ⁻³	4.825	28.519	71.481		
2x10 ⁻³	5.100	24.444	75.556		
3x10 ⁻³	5.300	21.481	78.519		
$4x10^{-3}$	5.925	12.222	87.778		
5x10 ⁻³	6,150	8,889	91,111		

Table (3) Effect of different concentrations of Nioxime on the activity ofinhibited AChE by compounds (6) to (10).

Compound (11)				
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	Activity Recovered[%]	
Nil	6.525	0	100	
0	1.400	78.544	21.456	
5x10 ⁻⁴	3.350	48.659	51.341	
1x10 ⁻³	3.575	45.211	54.789	
2x10 ⁻³	4.175	36.015	63.985	
3x10 ⁻³	4.400	32.567	67.433	
$4x10^{-3}$	4.725	27.586	72.414	
5x10 ⁻³	5.200	20.307	79.693	
	Compound (12	2)		
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]	
Nil	7.000	0	100	
0	2.700	61.429	38.571	
5x10 ⁻⁴	3.750	46.429	53.571	
1x10 ⁻³	4.025	42.500	57.500	
$2x10^{-3}$	4.325	38.214	61.786	
3x10 ⁻³	4.900	30.000	70.000	
$4x10^{-3}$	5.050	27.857	72.143	
5x10 ⁻³	5.300	24.286	75.714	
Compound (13)				
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]	
Nil	6.350	0	100	
0	2.375	62.598	37.402	
5x10 ⁻⁴	4.050	36.220	63.780	
1x10 ⁻³	4.400	30.709	69.291	
$2x10^{-3}$	4.675	26.378	73.622	
3x10 ⁻³	4.825	24.016	75.984	
$4x10^{-3}$	5.250	17.323	82.677	
5x10 ⁻³	5.450	14.173	85.827	
	Compound (14	·)	·	
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]	
Nil	6.050	0	100	
0	0.900	85.124	14.786	
5x10 ⁻⁴	2.775	18.595	45.868	
1x10 ⁻³	3.000	25.620	49.587	
2x10 ⁻³	3.650	34.298	60.331	
3x10 ⁻³	3.975	39.669	65.702	
$4x10^{-3}$	4.500	50.413	74.380	
5x10 ⁻³	4.925	54.132	81.405	
Compound (15)				
Oxime Cone.[M]	Enzyme activity	Inhibition[%]	ActivityRecovered[%]	
Nil	7.425	0	100	
0	1.325	82.155	17.845	
5x10 ⁻⁴	5.125	30.976	69.024	
1x10 ⁻³	5.500	25.926	74.074	
$2x10^{-3}$	5.825	21.549	78.451	
3x10 ⁻³	6.025	18.855	81.145	
4x10 ⁻³	6.225	16.162	83.838	
5x10 ⁻³	6.450	13.131	86.869	

Table (4) Effect of different concentrations of Nioxime on the activity ofinhibited AChE by compounds (11) to (15).

Fig.1 -: Effect of different concentrations of Nioxim on the activity of inhibited AChE by compounds (1-15)

Fig. 2-: Diagram shows the effect of Nioxim on the activity of inhibited AChE by compounds (1-15)

Scheme(1) First suggested mechanism for reactivation AChE by by Nioxim A₁= Ser, Glu, Asp, and Tyr A₂= His, Lys, Arg, Gln, and Asn

Scheme(2) Second suggested mechanism for reactivation AChE by NioximA1= Ser, Glu, Asp, and TyrA2= His, Lys, Arg, Gln, and Asn

References

- Davies, J. E. and Freed V.H., An agromedical approach to pesticide management. Consortium for international corporation, Berkeley. C.H. (1981).
- Goh, Kean and Pendelton R. F. pesticide safety for IPM field scouts. Chemicals pesticidal program Cornell Univ. Haca, NY, (1985).
- paul and Jane, Commercial Pesticidal pesticide applications mandatory blood tests, Agrichemical Age (1987).
- Rico, B. and Cavadam C., *Eur. J Neurosci.*, 1998, 10, 2346-2352.
- Doerge R. F. and Gisvold's "text Book of Organic medicinal and pharmaceutical chemistry", 8th ed., 433-450, J.B., Loppincott company, London, (1982).