Synthesis and Characterization Complexes Of Ni(II),Co(II) and Mn(II) with Schiff Base Derivatives from (2-hydroxy-benzylidene) and Urea or Thiourea

Omar Hamad Shehab AL- Obaidi and Aeed salih mohammed Chemistry Department, Women Education College, Al-Anbar University

(NJC)

(Recevied on 23/2/2010)

(Accepted for publication 29/11/2010)

Abstract

Complexes of the Schiff base ligands (2-hydroxy-benzylidene)- thiourea = (L_1) , (2-hydroxy-benzylidene)- urea = (L_2) of these ligands with some of transition metal ions Mn^{+2} , Co^{+2} and Ni^{+2} have been prepared and characterized by their (C.H.N) elemental analysis, IR, UV-VIS, atomic absorption, Molar conductivity measurements, Magnetic Susceptibility and melting points. From the result probable structures of the prepared complexes were proposed .

- -2),
$$(L_1)=$$
 -(- -2)
 $Mn^{+2}, Co^{+2}, Ni^{+2}$ $(L_2)=$ - (

(C.H.N)

Introduction

Schiff bases have been widely used as bidentate ligands in the field of coordination chemistry ⁽¹⁾ . the Schiff base complexes have been used in catalytic reaction ⁽²⁾ and as models for biological systems ⁽³⁾ . In recent years many copper complexes of Schiff base were prepared ⁽⁴⁾ . It has been reported that the structure of the constituent bonded to the imino nitrogen affects the coordination geometry of the complexes ⁽⁵⁾ . Metal complexes of Schiff bases are extensively studied due to synthetic flexibility, selectivity

and sensitivity towareds avariety of metal atoms ⁽⁶⁾.

In this work will investigate has been the chemistry of this urea and thiourea compound by preparing its Schiff base with 2-hydroxy-benzylidene , and study of the complexes metal $(Mn^{2+}, Co^{2+}, and Ni^{2+})$; bidentate ligands these:

(2-Hydroxy- benzylidene) -thiourea (L1)

(2-Hydroxy- benzylidene) –urea (L2)

Experimental

1- INSTRUMENTATION:

A pye – Unicom sp3-100 infrared spectrophotometer was used to record the IR spectra as KBr and CsI disc ,

UV/VIS spectra were measured by a HITACHI U-2000 spectrophotometer, Elemental Analysis (C.H.N) founded on (Carlo Erloa microanalyizer type 1106), determination of all metals

percentage by atomic absorption spectrophotometry on AA-680G (Shimadzu). Electrical conductance was measured on conductivity CDC304 (Jenway4070) Melting points determined by an electric heated block apparatus (Gallen Kamp), and were uncorrected.

2-MATERIALS:

[MnCl₂.6H₂O], [CoCl₂.6H₂O], [NiCl₂.6H₂O] were supplied by BDH, Ethanol Absolute, diethylether, DMSO, Urea, thiourea supplied by Aldrich.

A- Preparation of the ligand:

Preparation of (L_1) , (L_2) were prepared according to the literature ⁽⁷⁾ The full name of the Schiff base will be replaced by a number (L_1,L_2) respectively as in shown in table (1) for the rest of this paper . The physical properties of these compounds (L_1, L_2) are listed in table (1). The characters IR bands and UV/Vis spectrum in DMSO as shown in table (2), (3).

B-General procedure for preparation of complexes :

To a hot solution of ligands (L_1 or L_2) (2 mmole) in absolute ethanol (5 ml), a hot solution of metal chloride (1 mmole) in absolute ethanol (5ml) (dissolved in dilute HCl) ⁽⁸⁾ was added (neutral medium) and the resultant mixture was stirred and refluxed for 2

hours, the color of the solution changed immediately, the reaction mixture was cooled, and the solution was evaporated in vacuum, or lefted over night at room temperature, after this time a precipitate formed. This was collected by filtration in vacuo, washed and recrystallized from absolute ethanol/ether.

The physical properties of prepared complexes are listed in table (4).

The analogous complexes were prepared in a similar manner to that described above by adding a hot solution of ligands (L_1 or L_2) (1 mmole) in absolute ethanol (5 ml) to a hot solution of metal chloride (1 m mole) in absolute ethanol (5ml). The molar ratio of the complexes was determined according to the methods⁽⁹⁾.

Table(1): physical properties of the Schiff's base ligand

Table(1). physical properties of the Schin's base figure										
No.	Name and structure of compound		M.P C°	Elen	colour					
				C	Н	N				
L1	(2-Hydroxy- benzylidene) -thiourea		166-168	53.25 (53.31)	4.53 (4.25)	15.36 (15.85)	Yellow			
L2	(2-Hydroxy- benzylidene) -urea	72%	149-151	58.42 (58.53)	5.00 (4.91)	16.93 (17.06)	white			

Table (2): The characteristic ir bands of the Schiff's base ligand

No.	υ(O-H) phenol cm ⁻¹	υ (C-H) Aromatic cm ⁻¹	υ (C=O) cm ⁻¹	υ (C=N) Imine cm ⁻¹	υ (C=C) Aromatic cm ⁻¹	υ (C=S) cm ⁻¹
L1	3470	3025	-	1620	1580,1520	1240
L2	3470	3060	1680	1615	1580,1540	-

Table (3): UV-VISIBAL absorption of the shiff base ligand

No.	π- π *
L1	380,300,266
L2	385,305,270

Table (4): some physical properties of the prepared complexes

Tuble (1). Some physical properties of the propured complexes															
No.	complexes	Colo ur	ΔM μs mol ⁻¹	M.P C°	UV/VIS nm	Elemental analysis		IR SPECTRA cm ⁻¹							
						(% fou % ca M%		υ (O-H)	υ (C=O)	υ (C= N)	υ (C=S)	υ (C-O) phenol	υ (M-N)	υ (M-S) υ (M-O)	υ (M- X)
1	[Mn(L1)2]Cl2	G.Y	65	186-188	280,320,400	11.13 (11.10)	14.63 (14.61)	3400b	-	1600	1195	1245	450	370	-
2	[Co(L1)2]Cl2	L.B	75	190-192	278,315,410	11.86 (11.83)	14.51 (14.48)	3400b	-	1595	1190	1255	470	375	-
3	[Ni(L1)2]Cl2	L.G	85	193-195	285,325, 415	11.86 (11.84)	14.51 (14.49)	3400b	-	1585	1198	1260	460	395	-
4	[Mn(L2)2]Cl2	G.Y	70	169-171	290,325,405	11.92 (11.89)	15.67 (15.64)	3400b	1655	1593	-	1250	465	410	-
5	[Co(L2)2]Cl2	L.B	80	165-167	295,330,415	12.69 (12.66)	15.53 (15.51)	3400b	1650	1595	-	1240	455	415	-
6	[Ni(L2)2]Cl2	L.G	75	170-172	285,320,400	12.69 (12.67)	15.53 (15.51)	3400b	1660	1580	-	1252	475	405	-
7	[Mn(L1) Cl2.H ₂ O]	G.Y	15	195-197	275,310,410	16.67 (16.65)	21.98 (21.96)	3400b	-	1591	1185	1260	453	390	290
8	[Co(L1) Cl2.H ₂ O]	G.Y	18	185-187	283,325,420	17.73 (17.71)	21.71 (21.69)	3400b	-	1589	1180	1235	463	385	275
9	[Ni(L1) Cl2.H ₂ O]	L.B	20	189-191	290,305,409	17.73 (17.69)	22.71 (22.69)	3400b	-	1587	1200	1230	475	380	285
10	[Mn(L2) Cl2.H ₂ O]	L.G	10	175-177	280,315,405	15.07 (15.04)	15.10 (15.08)	3400b	1645	1605	-	1250	455	405	300
11	[Co(L2) Cl2.H ₂ O]	L.B	12	178-280	285,320,422	14.94 (14.92)	19.45 (19.43)	3400b	1640	1580	-	1240	450	408	305
12	[Ni(L2) Cl2.H ₂ O]	L.G	16	183-185	290,325,410	14.94 (14.91)	15.63 (15.60)	3400b	1635	1590	-	1253	461	412	295

G.Y = green yellowish, L.B = Light Brown, L.G = Light Green

Results and Discussion

The structures of schiff base complexes were confirmed spectroscopic techniques ir and uv /visible. Infrared spectra of the two ligands $(L_1)_{\bullet}(L_2)$ show the usual broad bands in the region around (3360-3475 cm⁻¹) due to the NH₂ stretching frequency (10) of the amide group of the ; No effect on ligands after frequencies complexation possibility precludes the complexation at this group (11).

The band at 1620 and 1615 cm⁻¹in the spectrum of $(L_1)\&(L_2)$ respectively due to $\upsilon(C=N)$ stretching shifted to the lower frequencies in the complexes $^{(12)}$ (table 4).

The negative shift generally in $\upsilon(C=N)$ suggested coordination to metal ions through nitrogen atom of (-C=N-) Schiff's base ⁽¹³⁾ of the ligand and on complexation indicates involvement of azomethine nitrogen ^(7,10) with metal ions.

The band at 1240 cm⁻¹ due to $\upsilon(C=S)$ stretching vibrations in (L_1) ,in the metal complexes this band is weakened and lowered ⁽¹⁵⁾ (table 4). The observations indicate the coordination of the ligand (L_1) through sulpher atom.

The carbonyl stretching frequency in (L_2) decreases to (1630-1650) cm⁻¹ compared to the free ligand at 1680 cm⁻¹, due to the charge transfer from the ligand to the metal $^{(9)}$,

In metal complexes a new peak is found 1265 cm⁻¹ for $\upsilon(\text{C-O})$ which is very characteristic and $\upsilon(\text{O-H})$ was broad $^{(11,12)}$ (table 4).

New bands which appeared at low frequencies in the spectra of the prepared complexes were probably due to (metal- nitrogen), (metal- sulpher), and (metal- chloride), bond vibration frequencies (table 4).

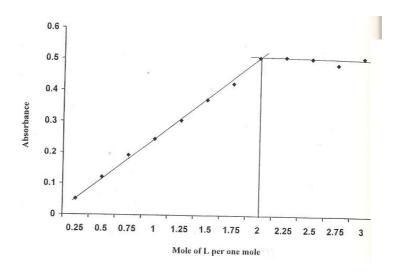
The complexes give different colour from the transition metal salts and the ligands, then this was

important indication to coordinate occurrence ⁽¹³⁾, therefore these colourly complexes show different characteristic absorption band in position, intensity or together when compared with the bands of ligand and this was another indication for the coordination occurrence ^(14,15).

The uv/visible spectra of the two prepared ligands (L_1 , L_2) at (10^{-3} M) in ethanol were showed three absorption bands ⁽¹⁵⁾. The first band between (380-385) nm represented (π - π *) while the second band (300-305) nm represented (π - π *) and the third band (265-270) nm is called (B-band) for phenyl group ^(16, 17)

Electronc spectra of Co(II) complexes showed one band at approximately 410 nm assigned for the ${}^4T_2g {\rightarrow} {}^4T_2g$ transition of 9F_4 term of d^7 system . this may indicate an octahedral geometry for Co complexes.

The electronic spectra of the Ni(II) complexes, exhibit four bands in the range 10390, 18620, 27900 and 36200 cm⁻¹. An examination of these bands indicates that the complexes have an octahedral geometry⁽¹⁸⁾. Thus, these bands may be assigned to the three spin allowed transitions ${}^{3}A_{2}g(F) \rightarrow {}^{3}T_{2}g(F)$, ${}^{3}A_{2}g(F) \rightarrow {}^{3}T_{1}g(F)$ and ${}^{3}A_{2}g(F) \rightarrow {}^{3}T_{2}g(P)$ respectively.


The Mn(II) , Co(II) and Ni(II) complexes had normal values of the magnetic moments , i.e. 2.10 , 3.50 and 4.70 B.M respectively , indicating their mono nuclear . Based on the experimental evidence obtained the complexes were characterized as six coordinates with octahedral structures⁽¹⁹⁾.

The measurements of the molar electrical conductivity of the complexes at (25°C) in DMSO are presented in table (4). These results show the molar conductivity are relatively high values , these complexes are electrolyte and low values refer to the complexes are non-

electrolyte, are in agreement with the proposed structures of the complexes.

The method of continuous variation mole ratio method are

employed in this work molar ratio(1:1) metal to ligand for(7-12) complexes and (1:2) metal to ligand for (1-6) complexes as shown below:

According to the results obtained from ir, uv/vis, molar ratio, molar conductivity and atomic absorption measurements for the

prepared complexes, the proposed molecular structure of the complexes has an octahedral structure as shown below:

References

- 1-A.Pui, *Croatica chemical Acta*, 2002, **75**,165.
- 2-D. E. Hamilton, R. S. Drago, A. Zombeck, *J.Am.Chem.Soc.*, 1987, **109**, 374.
- 3-D.Chen, A.E.Martel, *Inorg. Chem.*, 1987, **26**, 1026.
- 4-M. J. Samide, D. G. Poters, *J. Electroanal. Chem.*, 1998, **443**, 95.
- 5-M.Cato, Y.Muto, *Coord. Chem. Rev.*, 1988, **92**, 45.
- 6-C.Spinu and A.Kriza, *Acta. Chim.Slov.*, 2000, **47**, 179.
- 7- G.B.Mahto, *J.Indian.Chem.Soc.*, 1980, **57**, 481.
- 8- U.K.Mauthy, N.D.Jaghik and M.GPrjpe, *J.Indian.Chem.Soc.*, 1976, **53**,419.
- 9- Tamura, J., *Tetrahedron Lett*, 1983, **24**, 5749.
- 10- C.B.Mahto, *J.Indian.Chem.Soc.*, 1981, **58**, 935.
- 11- Waiss, Arg., *Tetrahedron Lett.*, 1964, 513.
- 12- S.Chandra, Lik. Gupta, D.Jain, *Spectrochim. Acta*, 2005, **A.61**, 2139.
- 13- M. M. Mostava, A. M. Shallabyand A. A. El.Asmy, *J. Inorg.Nucl. Chem.*, 1981, **43**, 2992.
- 14-E.Russeva, V.Kubanand
- L.Sommer, Coll, *Czech. Chem. Commu*., 1979, **44**, 374.
- 15- B.G.Saha , R.P.Shatnagan and K.Banerji, *J.Indian.Chem.Soc.*, 1982, **LIV**, 927.
- 16- A.E.Gillam and E.S.Strm,"An Introduction to the Electronic AbsorptionSpectroscopy",2ndEd.Edwar dArnoldLtd,London, P.115,150(1957).
- 17- R.M.Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compound," 2nd Ed. John Wiely and Sons Ltd .New york (1969) and 4th Ed.(1981).
- 18- A.B.P. Lever, "Crystal Field Spectra: Inorganic Electronic

Spectroscopy", 1st ed. Elsever. Amsterdam, pp 249-360 (1968). 19- F. Athar, F. Arjamand and S. Tabassum, *Trans Met. Chem.*, 2001, **26**, 426.