Vibration Frequencies and Normal Coordinates of Perylene with Different Molecular Charges A Mindo/3-Forces Treatment

Rehab M. Kubba, Manal U. Al-Dilemy and Muthana Shanshal^{*} *Department of Chemistry, College of Science, University of Baghdad Jadiriya, Baghdad , Iraq.* *Author to whom correspondence to be mailed. e-mail; mshanshal2003@yahoo.com

(NJC)

(Recevied on 18/10/2009)

(Accepted for publication 20/4/2010)

Abstract

The MINDO/3-FORCES method was applied for the calculation of the vibration frequencies and normal coordinates of the neutral aromatic perylene molecule and its radical cation and anion. The resulting frequency values were quite near the experimental values when available. Comparison of the results showed that for the C-H and C-C stretching vibrations the sym. mode shows higher frequency values than the asym. As for the δ CH and δ CC deformation the asym. vibrations where of higher frequency values than the sym. Comparing the frequencies of the three species with each other it was found that;

 $\nu CH_{str.} (C_{20}H_{12})^{+} > \nu CH_{str.} (C_{20}H_{12}) > \nu CH_{str.} (C_{20}H_{12})^{-}$

and,

 $v_{sym} CC_{str.} > v_{sym} CC_{str.} > v_{sym} CC_{str.} + v_{asym} CC_{str.} + v_{asym} CC_{str.} > v_{asym} CC_{str.} + v_{asym} CC_{str.} = v_{asym} CC_{str.} + v_{asym} C$

:

These relations are discussed in terms of the change of the σ electron densities at the C atoms of the C-H bonds and the changes in the C-C bond orders of the related bonds.

(3N–6)

MINDO/3-FORCES

 (δCC) (δCH)

C-C C-H

 $\nu CH_{str.} (C_{20}H_{12})^{+} > \nu CH_{str.} (C_{20}H_{12}) > \nu CH_{str.} (C_{20}H_{12})^{-}$

 $v_{sym} CC_{str.} > v_{sym} CC_{str.} > v_{sym} CC_{str.} + v_{asym} CC_{str.} + v_{asym} CC_{str.} > v_{asym} CC_{str.} = v_{asym} CC_{str.} + v_{asym} C$

عللت النتائج من خلال علاقة الترددات بقيم كثافة الالكترونات (σ) لذرة الكاربون في الاصرة C-H و تغير رتب الاواصر CC جراء تغير الشحن الجزيئية.

Introduction

The IR-vibration spectrum of the aromatic Perylene molecule was a subject for many experimental works ^[1-3]. Later, the development of the isolated matrix technique allowed the of remeasurement the vibration spectrum of the molecule with a higher accuracy ^[4-9]. Langhoff et al. applied the ab initio quantum mechanical method for the theoretical analysis of its vibration spectrum ^[10]. However, in their work only the basic and most prominent frequencies were discussed.

As for perylene radical cation, various experimental studies of its vibration spectrum appeared ^[4-5]. The theoretical treatments were usually based on the ab initio SCF-MO method and limited to the discussion of the most relevant vibrations with no full analyses of the 3N-6 normal coordinates ^[10-11]. For the radical anion, no experimental vibration frequencies are known.

In the present work, we applied the MINDO/3-FORCES method which is

known to yield good frequency values for the polyaromatic hydrocarbons [12-^{18]}. This method is used for evaluating vibration frequencies and for the complete analysis of all vibration frequencies and normal coordinates of perylene. The here reported vibration absorption intensities are to be viewed cautiously, due to the quantum mechanical approximate nature of the MINDO/3-FORCES method. For the analysis of the normal coordinates of the molecule we applied the DRAW.MOL^[19] program, and the [20] Herzberg scheme for their classification.

Results and discussion

Figure 1 shows a descriptive prototype of the molecular motion of a normal coordinate of perylene. In this figure two vibrations are shown; a- an in plane and b- an out of plane vibration mode.

كذلك:

Fig. 1. DRAW.MOL pictures of two vibration modes of Perylene; a- in plane and b- out of plane vibration.

Perylene shows D_2h symmetry, with three C_2 rotation axes. The C_z axes falls conventionally in the plane of the molecule and passing through the biggest number atoms.

Fig. 2. Choice of the Cartesian coordinate as applied for the perylene molecule.

The IUPAC numbering of atoms was adopted for the molecule, Fig. 3. The vibration frequencies were calculated for the MINDO/3-FORCES equilibrium geometry of the molecule, Table 1. Totally 90 modes of vibrations are expected for the molecule. They classified are according following to the representations;

 $\Gamma_{\text{vib.}} = \Gamma_{\text{tot.}} - (\Gamma_{\text{rot.}} + \Gamma_{\text{tran.}}) = 16A_{\text{g}} + 6B_{1\text{g}} + 8B_{2\text{g}} + 15B_{3\text{g}} + 7A_{\text{u}} + 15B_{1\text{u}} + 15B_{2\text{u}} + 8B_{3\text{u}}$

 Γ_{ip} = In-plane modes of vibrations

$$\Gamma_{ip} = 2N-3 = (2 \times 32) - 3 = 61 = 16A_g + 15B_{1u} + 15B_{2u} + 15B_{3g}$$

 Γ_{op} = Out of plane modes of vibrations

 $\Gamma_{op} = N-3 = 32-3 = 29 = 6B_{1g} + 8B_{2g} + 7A_u + 8B_{3u}$

Fig. 3. Structure of the Perylene molecule showing a-the different designations of the C and H atoms as used normaly by the organic chemist; b- the numbering of the atoms according to the IUPAC convention.

Bond length (Å)	MINDO/ 3-FORCES	other wor	k (neutral)	this work MINDO/ 3-FORCES		
æ Bond angles (deg.)	neutral	Exptl. [22]	calcd. [21]	cation	anion	
C` ₃ C` ₄	1.507	1.471	1.476	1.477	1.480	
C`2C`3	1.478	1.425	1.432	1.467	1.471	
C ₃ C ₃	1.402	1.397	1.390	1.438	1.431	
C`1C`2	1.460	1.424	1.415	1.480	1.477	
C ₁ C ₁	1.446	1.400	1.425	1.437	1.437	
$C_1 C_2$	1.377	1.370	1.375	1.395	1.392	
C_2C_3	1.424	1.418	1.416	1.401	1.401	
H ₁ C ₁	1.106			1.105	1.108	
H_2C_2	1.105			1.103	1.110	
H_3C_3	1.107			1.106	1.108	
< C [°] ₄ C [°] ₃ C [°] ₂	119.422			119.6	119.6	
< C [°] ₄ C [°] ₃ C ₃	123.368			123.4	123.4	
$< C_2 C_1 C_1$	118.713			118.4	118.5	
$< C_1 C_1 C_2$	121.423			121.7	121.2	
< H ₁ C ₁ C [`] ₁	118.502			118.8	119.1	
< H ₂ C ₂ C ₁	121.150			120.5	119.9	
< H ₃ C ₃ C [*] ₃	120.374			119.0	119.9	

Table (1): Calculated geometry for perylene (neutral, cation and anion) molecule.

Symmetry & distribution		Scaled	Raman & IR	calc.	This	work	Cation
Syn	interry & distriction	MINDO/3 -FORCES	[3, 8, 4]	[10]	anion	cation	Exp.[20]
Ag							
ν_1	CH_{β} str.	3063			3032	3086	
v_2	CH_{α} str.	3041			3016	3059	
V3	CHá str.	3034			2999	3048.3	
ν_4	ring (CC str.)	1627	1620		1577	1564	1748
v ₅	ring (CC str.)	1583	1579		1554.6	1557	1601
ν_6	ring (CC str.)	1406			1443	1442	
v_7	ring (CCC str.)	1387	1373		1363	1371	1387
ν_8	ring (CCC str.)	1355	1367		1353	1353	
v 9	$\delta CH_{\dot{\alpha},\beta}$ +ring(CCC str.)	1239	1291		1254	1246	
v_{10}	δCH _ά ,β	1218	1222		1222	1216	
v_{11}	δCH _α	1182	1140		1185	1180	
v_{12}	δ ring (δ CCC) + δ CH _{β}	1020	1045		1025	1020	1094
v_{13}	δ ring (δCCC)	793	784		796	791	
v_{14}	δ ring (δCCC)	642	548		647	646	532
v_{15}	δ ring (δCCC)	444			449	444	434
ν_{16}	δ ring (δCCC)	368			367	368	357
B _{1u}							
v ₃₀	CH_{β} str.	3062	3065 ^{a,b}	3068	3028	3085.4	
v ₃₁	CH_{α} str.	3040			3015	3058.9	
V ₃₂	CHá str.	3031			2997.4	3046.9	
V ₃₃	ring (CC str.)	1623			1562	1552.5	1597
V ₃₄	ring (CC str.)	1586	1597 ^{a,b}	1586	1545	1534	
V ₃₅	ring (CCC str.)	1435	1385 ^{a,b}	1387	1417	1411.3	

 Table (2): Vibrational frequencies for perylene (neutral, anion and cation) molecule.

Table (2); continue

v_{36}	ring (CCC str.)	1371			1330	1332	
V ₃₇	ring (CCC str.)	1315			1287	1304	1298
V ₃₈	δCHα, ά	1221	1218a,b	1217	1222.6	1222	1223
V ₃₉	δCHα, ά	1184	1157a,b	1157	1191	1185	
v_{40}	$\delta CH\beta + \delta ring (\delta CCC)$	1091	1088 ^{a,b}	1091	1159	1148	
v_{41}	δring(δCCC)(ring AClock wise)	983			980	980	969
V ₄₂	δ ring (δCCC)	773	791 ^{a,b}	793	779	770	
v ₄₃	δ ring (δCCC)	581	583 ^b	579	580	578	
v_{44}	δ ring (δCCC)	482			482	479	
B _{2u}							
V ₅₃	CH_{β} str.	3061	3069 ^a	3069	3026	3085.35	
v ₅₄	CH_{α} str.	3039	3057 ^a	3049	3016	3057.6	
V ₅₅	CHά str.	3034			2998	3048	
V ₅₆	ring (CC str.)	1628	1614 ^{a,b}	1596	1541	1559	1589
V ₅₇	ring (CC str.)	1521	1501 ^{a,b}	1495	1494	1476	
V ₅₈	ring (CC str.)	1471			1400	1411.4	
V ₅₉	ring (CCC str.)	1383	1335 ^{a,b}	1329	1354	1362	
V ₆₀	ring (CCC str.)+ δ CH α + β	1264	1280 ^{a,b}	1272	1253	1253	
v_{61}	δ CHά	1241			1229	1250	
V ₆₂	$\delta CH\alpha + \delta ring (\delta CCC)$	1223			1227	1212	
V ₆₃	δ CHα,β	1177	1186 ^b	1200	1179	1171	
V ₆₄	$\delta \operatorname{ring} (\delta \operatorname{CCC}) + \delta \operatorname{CH}_{\beta}$	1041	1047 ^{a,b}	1043	1042	1038	
V ₆₅	δ ring (δCCC)	764		775	762	785	
V ₆₆	δ ring (δCCC)	534			531	523	
ν_{67}	δ ring (δCCC)	255			256	252	
B _{3g}							
ν_{68}	CHβ str.	3061			3023	3085.31	

a: ref. (3), b: ref. (7)

Table (2); continue

V ₆₉	CHa str.	3038	 	3013	3057.5	
ν_{70}	CHά str.	3030	 	2997	3046.8	
v_{71}	ring (CC str.)	1629	 	1555	1558.7	
v ₇₂	ring (CC str.)	1523	 	1506	1492	
V ₇₃	ring (CC str.)	1425	 	1468	1458	
v_{74}	ring (CCC str.)	1357	 	1305	1313	
v ₇₅	δCHά,α,β (rocking)	1229	 	1225	1240	
v ₇₆	ring (CCC str.) + δ CH	1194	 	1222.9	1218	1207
v 77	δCHα,β	1175	 	1183	1173	
ν_{78}	δCHβ,ά,α	1169	 	1178	1167	
V ₇₉	δring (δCCC) (ring A Clockwise)	890	 	886	885	
ν_{80}	δring (δCCC) (ring A anti clockwise)	622	 	621	617	
ν_{81}	δ ring (δCCC)	540	 	545	534	
V ₈₂	δring (δCCC) (rings B anti clockwise)	367	 	371	371	
	Out of plane					
Au						
ν_{17}	γCHα,β	962	 	949	970	
ν_{18}	γCHά,α	926	 	837	962	
v ₁₉	γCHβ,ά,α	833	 	787	841	
v ₂₀	γCC (ring A)	654	 	640	692	
v_{21}	γCC (rings B)	484	 	464	456	
v ₂₂	γCC (rings B)	228	 	214	225	
v_{23}	γCC (rings B)	27	 	33	38	
B _{1g}						
v_{24}	γCHβ,α	963	 	950	970	
v_{25}	γCHα,ά	926	 	827	959	
v_{26}	γCHα,β,ά	807	 	779	805	
V ₂₇	γCC	551	 	541	545	

ν_{28}	γCC	403			388	390	
V ₂₉	γCC	188			181.5	183	
B_{2g}							
v_{45}	γCHβ,α	968			953	984	
v_{46}	γCHα,ά	938			857	966	
v_{47}	γCC	853			843	890	
ν_{48}	$\gamma CH \dot{\alpha}, \beta + \gamma CC(ring A)$	770			790	810	
v_{49}	γCC	685			632	623	
v_{50}	γCC	441			463	437	
v_{51}	γCC(ring A)	294			289	278	
V ₅₂	γCC (rings B)	126			138	132	
B _{3u}							
ν_{83}	γCHβ,α	969	970 ^{a,b}	982	955	982	
ν_{84}	γCHα,ά	940			847	964	
ν_{85}	γCHβ,ά	815	815 ^{a,b}	815	815	851	
v_{86}	γCC (ring A)	745	772 ^{a,b}	765	797	757	
ν_{87}	γCC	546	544 ^b	545	589	533	
ν_{88}	γCC	445			457	436.8	
V ₈₉	γCC	173			181.8	169	
V ₉₀	γCC	87			86	83	

Table (2); continue

Scaling factors: 0.876 (CH str.); 0.96 (ring (CC) str.); 1.06 (δCH); 1.08 (ring(δCCC); 1.11 (γCH); 1.11 (γCCC); 1.03 (γCC).

Special scaling factors were used for vibration modes with overlaps of different types of motion; 1.06 (ring (CCC) str. + δ CH); 1.11 (γ CCC + γ CH) or (γ CC + γ CH); 1.03 (γ CH + γ CC)^[23].

γ: out of plane bending vibration.

δ: in-plane bending vibration.

Fig.4. The graphical pictures of some vibration modes for neutral Perylene molecule as drawn applying the DRAW. MOL. routine.

Intensity (I			km/mol)		
\$	Symmetry & description	Scaled MINDO /3-FORCES	Calcd. [10]		
In-p	lane				
Ag					
ν_1	CHβ str.	0.00			
ν_2	CHa str.	0.00			
ν_3	CHά str.	0.00			
ν_4	ring (CC str.)	0.00			
ν_5	ring (CC str.)	0.00			
ν_6	ring (CC str.)	0.00			
ν_7	ring (CCC str.)	0.00			
ν_8	ring (CCC str.)	0.00			
v 9	δ CHά, β + ring (CCC str.)	0.00			
ν_{10}	δCHά,β	0.00			
v_{11}	δCHα	0.00			
v_{12}	δ ring (δ CCC) + δ CH β	0.00			
ν_{13}	δ ring (δCCC)	0.00			
ν_{14}	δ ring (δCCC)	0.00			
v_{15}	δ ring (δCCC)	0.00			
v_{16}	δ ring B (δCCC)	0.00			
B _{1u}					
ν_{30}	CHβ str.	174.3	134.5		
ν_{31}	CHa str.	89.3			
v_{32}	CHά str.	51.0			
v_{33}	ring (CC str.)	0.60			
ν_{34}	ring (CC str.)	0.00	23.8		
v_{35}	ring (CCC str.)	0.26	36.0		
ν_{36}	ring (CCC str.)	0.00			
ν_{37}	ring (CCC str.)	0.18			
ν_{38}	δCHα, ά	1.95	5.9		
V ₃₉	δCHα, ά	0.57	1.06		
ν_{40}	$\delta CH\beta + \delta ring (\delta CCC)$	4.22	2.5		
ν_{41}	δ ring(δCCC)(ring A clockwise)	0.64			
v_{42}	δ ring (δCCC)	4.27	7.7		
v_{43}	δ ring (δ CCC)	0.72	3.0		
ν_{44}	δ ring (δCCC)	0.00			
B _{2u}					

Table (3): Calculated IR absorption intensities for neutral Perylene molecule.

Table (3); continue

V ₅₃	CHβ str.	201.6	34.7
v_{54}	CHa str.	12.6	7.8
V55	CHá str.	45.3	
v ₅₆	ring (CC str.)	0.03	9.5
v_{57}	ring (CC str.)	0.01	6.2
ν_{58}	ring (CC str.)	0.03	
V59	ring (CCC str.)	0.00	8.7
ν_{60}	ring (CCC str.) + δ CH α + β	0.00	2.8
v ₆₁	δ CHά	0.42	
v ₆₂	δ CH α + δ ring (δ CCC)	3.96	
v ₆₃	δ CHα,β	1.09	1.1
ν_{64}	δ ring (δ CCC) + δ CH β	0.29	3.1
v_{65}	δ ring (δCCC)	0.02	2.7
v_{66}	δ ring (δCCC)	0.42	
ν_{67}	δ ring (δCCC)	0.00	
B _{3g}			
ν_{68}	CHβ str.	0.00	
V ₆₉	CHα str.	0.00	
v_{70}	CHá str.	0.00	
v_{71}	ring (CC str.)	0.00	
v_{72}	ring (CC str.)	0.00	
v ₇₃	ring (CC str.)	0.00	
v_{74}	ring (CCC str.)	0.00	
v_{75}	δ CHά,α,β (clockwise rocking)	0.00	
v_{76}	rings (CCC str.) + δ CH	0.00	
v_{77}	δ CHα,β	0.00	
ν_{78}	δ CHβ,ά,α	0.00	
V79	δ ring (δCCC)(ring A clockwise)	0.00	
ν_{80}	δring(δCCC)(ring A antilockwise)	0.00	
ν_{81}	δ ring (δCCC)	0.00	
V ₈₂	δring (δCCC) (rings B anticlockwise)	0.00	
	Out of plane		
Au			
v_{17}	γCHα,β	0.00	
ν_{18}	γCHά,α	0.00	
v ₁₉	γCHβ,ά,α	0.00	
v_{20}	$\gamma CC (ring A)$	0.00	

v_{21}	γCC (rings B)	0.00	
v_{22}	γCC (rings B)	0.00	
V ₂₃	γCC (rings B)	0.00	
B _{1g}			
v_{24}	γCHβ,α	0.00	
V ₂₅	γCHα,ά	0.00	
v_{26}	γCHα,β,ά	0.00	
v_{27}	γCC	0.00	
v_{28}	γCC	0.00	
V ₂₉	γCC	0.00	
B _{2g}			
v_{45}	γCHβ,α	0.00	
v_{46}	γCHα,ά	0.00	
ν_{47}	γCC	0.00	
ν_{48}	$\gamma CH \dot{\alpha}, \beta + \gamma CC (ring A)$	0.00	
v_{49}	γCC	0.00	
v_{50}	γCC	0.00	
v_{51}	γ CC(ring A)	0.00	
v_{52}	γCC (ring B)	0.00	
B _{3u}			
v_{83}	γCHβ,α	0.00	2.6
ν_{84}	γCHα,ά	0.08	
v_{85}	γCHβ,ά	2.91	119.8
v_{86}	γCC (ring A)	0.12	63.0
ν_{87}	γCC	0.10	8.1
ν_{88}	γCC	0.01	
v_{89}	γCC	0.08	
V ₉₀	γCC	0.01	

Table (3); continue

Totally twelve C-H vibration frequencies are calculated and included in Table 2. The DRAW.MOL pictures show that the motion of these modes is localized completely on the H atoms. For all the C-H vibrations the sym. modes are of higher frequency values than their corresponding asym. Modes, i.e.

 v_{sym} (CHa str.)(3041 cm⁻¹) > v_{asym} (CHa str.)(3040 cm⁻¹)

 v_{sym} (CH $\beta_{str.}$)(3063 cm⁻¹) > v_{asym} (CH $\beta_{str.}$)(3062 cm⁻¹)

 v_{sym} (CHá str.)(3034 cm⁻¹) > v_{asym} (CHá str.)(3031 cm⁻¹)

Comparing all the C-H modes, the following correlation is detected;

 v_{sym} (CH β str.) > v_{asym} (CH β str.) > v_{sym} (CH α str.) > v_{asym} (CH α str.) > v_{sym} (CH α str.) > v_{sym} (CH α str.).

As for the C-C stretching vibrations the asym. modes are usually of higher frequency than the sym.e.g.

 $v_{asym} (CC_{str.})(1629 \text{ cm}^{-1}) > v_{sym} (CC_{str.})(1627 \text{ cm}^{-1})$

Similar relation is found for the CCC ring vibration; e.g.;

$v_{asym} (CC_{str.})(1435 \text{ cm}^{-1}) > v_{sym} (CC_{str.})(1387 \text{ cm}^{-1})$

For all in plane vibrations, δ C-H as well as δ C-C, the asym. Vibration frequencies are higher than the asym.; e.g.

$v_{asym} (\delta CH)(1241 \text{ cm}^{-1}) > v_{sym} (\delta CH)(1239 \text{ cm}^{-1})$

 v_{asym} (δCCC)(1041 cm⁻¹) > v_{sym} (δCCC)(1020 cm⁻¹).

Table 2 includes the frequencies of all out of plane C-H and C-C vibration modes too.

The calculated IR absorption intensities in the table allows a qualitative distinction between the IR active ($\neq 0.0$) and the IR active (= 0.0) vibration mode

Vibration frequencies and normal coordinates for the positive and negative radical ions of perylene.

For both ions of perylene, the MINDO/3-FORCES treatment yielded bond distances of minor changes from those of the neutral molecule, Table 1, but retained the D₂h symmetry. For this reason the symmetry considerations of the vibration spectrum of neutral pervlene apply for its radical cation and anion too.

As for the stretching C-H and C-C vibrations the symmetric modes are of higher frequencies than their corresponding asymmetric modes in a similar manner as in the neutral perylene molecule; e.g.

 $v_{sym} (CH_{\alpha \ str.})(3059 \ cm^{-1}) > v_{asym}$ $(CH_{\alpha \ str.})(3058 \ cm^{-1})$ $v_{sym} (CH_{\beta \ str.})(3086 \ cm^{-1}) > v_{asym}$ $(CH_{\beta \ str.})(3085 \ cm^{-1})$ $v_{sym} (CH_{\dot{\alpha} \ str.})(3048 \ cm^{-1}) > v_{asym}$ $(CH_{\dot{\alpha} \ str.})(3047 \ cm^{-1})$

The sequence of the C-H frequencies follows the following order:

$$\begin{split} \nu_{\text{sym}} & (\text{CH}_{\beta \text{ str.}}) > \nu_{\text{asym}} (\text{CH}_{\beta \text{ str.}}) > \nu_{\text{sym}} \\ & (\text{CH}_{\alpha \text{ str.}}) > \nu_{\text{asym}} (\text{CH}_{\alpha \text{ str.}}) > \nu_{\text{sym}} \\ & (\text{CH}_{\acute{\alpha} \text{ str.}}) > \nu_{\text{asym}} (\text{CH}_{\acute{\alpha} \text{ str.}}). \end{split}$$

Similarly for the C-C stretching vibrations, e.g.;

 v_{sym} (CC str.)(1564 cm⁻¹) > v_{asym} (CC str.)(1553 cm⁻¹)

As for the in plane deformation vibrations, the asym. modes show higher frequencies than the sym. modes, e.g.

 v_{asym} (δ CH)(1250 cm⁻¹) > v_{sym} (δ CH))(1246 cm⁻¹) and,

 v_{asym} (δ CCC)(980 cm⁻¹) > v_{sym} (δ CCC)(791 cm⁻¹).

All out of plane C-H and C-C vibration frequencies for both radical ions are included in the table too.

General correlation.

Of major interest is the discussion of the influence of the molecular charge on the vibration frequencies of perylene molecule. As for the CH stretching vibrations, it is found, on inspecting the frequency values of Table 2 and 4 that, the frequencies of the cation are higher than those for the neutral and these are higher than the frequency values of the radical anion.

 $v_{sym} CH_{\beta \ str.} (C_{20}H_{12})^{+} > v_{sym} CH_{\beta \ str.} (C_{20}H_{12}) > v_{sym} CH_{\beta \ str.} (C_{20}H_{12})^{-}$ $v_{sym} CH_{\alpha \ str.} (C_{20}H_{12})^{+} > v_{sym} CH_{\alpha \ str.} (C_{20}H_{12})^{-}$ $(C_{20}H_{12}) > v_{sym} CH_{\alpha \ str.} (C_{20}H_{12})^{-}$

 $v_{sym} CH\dot{\alpha}_{str.} (C_{20}H_{12})^{+} > v_{sym} CH\dot{\alpha}_{str.} (C_{20}H_{12}) > v_{sym} CH\dot{\alpha}_{str.} (C_{20}H_{12})^{-}$

This relation applies for all three types of C-H bonds in the molecule α β $\dot{\alpha}$.

A similar relation holds for the asym. C-H vibrations of perylene.

 $v_{asym} CH_{\beta str.} (C_{20}H_{12})^{+} > v_{asym} CH_{\beta}$ str. $(C_{20}H_{12}) > v_{asym} CH_{\beta str.} (C_{20}H_{12})^{+}$

 $v_{asym}CH\alpha str. (C_{20}H_{12})^{+} > v_{asym}CH\alpha$ $str. (C_{20}H_{12}) > v_{asym}CH\alpha str. (C_{20}H_{12})^{+}$

 $v_{asym}CH\dot{\alpha}_{str.} (C_{20}H_{12})^{*+} > v_{asym}CH\dot{\alpha}_{str.} (C_{20}H_{12}) > v_{asym}CH\dot{\alpha}_{str.} (C_{20}H_{12})^{*+}$

To explain this result one may draw the following argument;

The C-H bond is formed through the interaction of 1s AO of H

with the 2s, $2p_x$ and $2p_y$ AO s of the C atom. No contribution from the 2pz since AO is expected, this is orthogonal to the H_{1s} AO. Calculating electron densities of the σ the electrons for all three charged and neutral perylenes and inspecting their correlation with the corresponding C-H stretching frequencies an almost linear correlation is found, Fig. 5.

σ CHβ (C₂₀H₁₂)·⁺ > σ CHβ (C₂₀H₁₂)> σ CHβ (C₂₀H₁₂)·⁺ > σ CHβ (C₂₀H₁₂)σ CHα (C₂₀H₁₂)·⁺ > σ CHα (C₂₀H₁₂)> σ CHα (C₂₀H₁₂)·⁺ > σ CHά (C₂₀H₁₂)

> σ CHά (C₂₀H12)[.]

Fig. 5 Calculated change of the C-H vibration frequency of Perylene as a function of the σ electron densities of the carbon atoms.

A similar conclusion has been drawn on studying the vibration frequencies of the neutral, cation and anion radicals of benz@anthracene^[17] and phenanthrene^[18].

The CC stretching vibrations

Different is the change of the vibration frequencies of the CC bonds due to the change in the charge of the molecule. It is not similar for the sym. and asym. vibrations. For the sym. modes the following order is calculated;

 $v_{sym} CC_{str.} > v_{sym} CC_{str.} > v_{sym}$ CC str. +

The highest frequency is calculated for the neutral molecule, followed by that of the radical anion and then the radical cation. As for the asym. vibrations, the radical cation possess the highest vibration frequency, followed by the neutral and then the radical anion species.

$$v_{asym} CC_{str.}$$
 $+ v_{asym} CC_{str.} > v_{asym}$
CC $_{str.}$ $- v_{asym}$

The obvious reason for this change in the vibration frequency is the change in the bond orders of the related bonds due to the radical ion formation. According to the pairing theorem, adding an electron to the neutral molecule, i.e. forming the radical anion causes the occupation of LUMO with coefficient values different from those of the HOMO of perylene, where as removing an electron, to form a radical cation, does not change the coefficients of the singly occupied HOMO. The difference in the MO coefficient changes the bond orders of the CC bonds and consequently their vibration frequencies. Fig. 6. shows the change in the vibration frequencies of the double bond and single bond in Perylene due to the change in the charge of the molecule.

Fig. 6. Calculated change of the C-C vibration frequency of Perylene due to the change in the molecular charge.

As for the in-plane deformations the following correlations were found;

$$\begin{split} \delta_{sym} \, CH \, (C_{20}H_{12})^{\cdot} &> \delta_{sym} \, CH \\ (C_{20}H_{12}) &> \delta_{sym} \, CH \, (C_{20}H_{12})^{\cdot +} \\ \delta_{asym} \, CH \, (C_{20}H_{12})^{\cdot -} &> \delta_{asym} \, CH \\ (C_{20}H_{12})^{\cdot +} &> \delta_{asym} \, CH \, (C_{20}H_{1} \text{ and} \\ \delta_{sym} \, CCC \, (C_{20}H_{12})^{\cdot -} &> \delta_{sym} \, CCC \\ (C_{20}H_{12}) &> \delta_{sym} \, CCC \, (C_{20}H_{12})^{\cdot +} \\ \delta_{asym} \, CCC \, (C_{20}H_{12}) &> \delta_{asym} \, CCC \\ (C_{20}H_{12})^{\cdot +} &> \delta_{asym} \, CCC \, (C_{20}H_{12})^{\cdot -} \end{split}$$

And for the out of plane modes of vibrations

 $\gamma CH (C_{20}H_{12})^{+} > \gamma CH (C_{20}H_{12}) >$ $\gamma CH (C_{20}H_{12})^{-}$ $\gamma CC (C_{20}H_{12})^{-} > \gamma CC (C_{20}H_{12}) >$ $\gamma CC (C_{20}H_{12})^{+}$

Conclusion

The MINDO/ **3-FORCES** computed vibration frequencies of pervlene show good agreement with the available experimental frequencies. The study of the obtained frequencies show the same correlation between the sym. and assym. modes as was found for other PHD molecules. Interesting relations is shown between the frequencies of neutral perylene and its charged ions. These relations may be extended for other PAH molecules. The results may be useful for the reactivity of this class of organic molecule.

References

1- T. Tamm and P. Sarri, *J.Chem.Phys.*, 1979, **40**, 311.

2- B. Fourmann, C. Jouvet, Ph. Millie,A.Tramer and J.M.Le Bars,J.Chem.Phys., 1985, 92, 25.

 S.J. Cyvin, B.N. Cyvin, and Klaeboe, *Spectrosc.Lett.*, 1983, 16, 239.

4- J. Szczepanski, C. Chapo and M.
Vala, *Chem.Phys.Lett.*, 1993, 205, 434.

5- J. Szczepanski and M. Vala, *Nature*, 1993, 363, 699.

6- J. Szczepanski and M. Vala, J.Astrophys., 1993, 414, 646.

7- J. Szczepanski and M. Vala, F.
Pauzat, O. Parisel, D. Talbi, Y.
Ellinger, *J. Phys.Chem.*, 1994, 98, 9187.

8- M. Hudgins and A.Sandford, J.*Phys.Chem.*, 1998, A102, 344-352.

9- C. Joblin, F. Salama and L.Allamandola, *J.Chem.Phys.*, 1999,

110, 15.

10- S.R. Langhoff, J. Phys.Chem.,

1996, **100**, 2819.

- 11- Negri and M.Z. Zgierski, *J.Chem.Phys.*, 1994, **100**, 1387.
- 12- R. M. Kubba and M. Shanshal,
- Iraqi J, Sci., 2000, 41A(2), 1.
- 13- R. M. Kubba and M. Shanshal,
- Iraqi J, Sci., 2000, 41A(4), 1.
- 14- R.M. Kubba and M.Shanshal, Z. Naturforsc., 2001, 56a, 493.
- 15- R. M. Kubba and M. Shanshal, Z.

Naturforsch., 2001, 56a, 499.

16- H.H. Abdullah, R.M. Kubba, and
M.Shanshal, Z. Naturforsch., 2003,
58a, 645-655.

- 17- R.M. Kubba, R.R. Al-Ani and M.Shanshal, 2005, 60a, 658-464.
- 18- R.M. Kubba, R.L. Al-Ani and M.
 Shanshal, Z. Naturforsch, 2005, 60a, 465-470.

19- R. M. Kubba, *National Journal of Chemistry*, 2005, **19**, 380-396. 20- G. Herzberg, "Molcular Spectra and Molecular Structure Infrared and Raman Spectra of Polyatomic Molecules", Van Nostrand Reinhold Co., New York, (1971).

21- J. Kao and L. Allinger, J. Am.Chem. Soc., 1977, 99(4), 975.

22- A. Camerman and J. Trotter,
Proc. R. Soc. London, Ser.A, 1964,
279, 129.

23- R.M. Kubba, Ph.D. Thesis, *College* of Science, Baghdad University,(1997).