Radiolysis of Cobalt (II) and Nickel (II) – Complexes Containing Mixed Ligands by Gamma Rays

Z. F. DAWOOD* & M. W. IBRAHIM * Chemistry Department/ Education College/ Mosul University

(NJC)

(Received on 11 / 1 /2005)

(Accepted for publication on 27/10/2005)

Abstract

The effect of gamma-radiation has been studied directly on some solid complexes cobalt (II) and nickel (II) complexes having the formula $[M_2(LH_2)_2(AH_2)_2(NO_3)_2](NO_3)_2$, $[M_2(LH_2)_2(AH_2)_2X_n]$ and $[M_2(SCH)_2(AH)_2]$ (where $M = Co^{+2}$ or Ni^{+2} , $AH_2 =$ any of the following carboxylic acid "salicylic acid–SH₂, anthranilic acid–AnH₂ or phthalic acid–PH₂", LH₂=salicylaldehyde semicarbazone–SCH₂ or salicylaldehyde thiosemicarbazone-STH₂, X= CO_3^{-2} or $CH_3CO_2^{-1}$; n = 0, 2 or 4). Ionization and excitation of these complexes have been achieved . The melting or decomposition points, conductivities and electronic spectral data have been indeed related to the final stable products . The results showed that some of the complexes have been decomposed by gamma ray, others complexes have not been affected . Very interesting results have been obtained in the case of, $[Co_2(SH_2)_2(SCH_2)_2(NO_3)_2](NO_3)_2$, $[Ni_2(SH_2)_2(STH_2)_2(NO_3)_2](NO_3)_2$, $[Co_2(SH)_2(SCH)_2]$, $[Ni_2(AnH_2)_2(STH_2)_2(NO_3)_2](NO_3)_2$, $[Co_2(PH)_2(SCH)_2]$ in which a sort of polymerization have been exhibited after their radiolysis .

(II) (II) STH_2 - SCH_2 -(PH₂ - AnH₂ - SH₂ -) Ni⁺² Co⁺²=M) [M₂(SCH)₂(AH)₂] [M₂(LH₂)₂(AH₂)₂(NO₃)₂](NO₃)₂ [M₂(LH₂)₂(AH₂)₂X_n] X = LH₂ = AH₂ . (4 2 = n CH₃CO₂⁻ CO₃⁻² =

 $[Co_{2}(SH)_{2}(SCH)_{2}] [Ni_{2}(SH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} [Co_{2}(SH_{2})_{2}(SCH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} : \\ [Co_{2}(PH)_{2}(SCH)_{2}] [Ni_{2}(PH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} [Ni_{2}(AnH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} : \\ [Co_{2}(PH)_{2}(SCH)_{2}] [Ni_{2}(PH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} [Ni_{2}(AnH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} : \\ [Co_{2}(PH)_{2}(SCH)_{2}] [Ni_{2}(PH_{2})_{2}(STH_{2})_{2}(NO_{3})_{2}](NO_{3})_{2} : \\ [Co_{2}(PH)_{2}(SCH)_{2}] : \\ [Co_{2}(PH)_{2}(SCH)_{2}(SCH)_{2}] : \\ [Co_{2}(PH)_{2}(SCH)_{2}] : \\ [Co_{2}(PH)_{2}(SC$

.

Introduction

The effect of any ionizing radiation with an interaction between started radiation and the molecules . There have been two different types of interactions either direct effect which observed in the same molecule where the primerv absorption occurred or indirect effect in which the radiation energy has been absorbed in another molecule (solvent) resulting in the formation of reactive products that subsequently reacted with other molecules in the system . In a dry system (without solvent), only the direct effect occurred⁽¹⁾.

A good deal of work has been reported on the radiolysis of complexes in solutions, this is due to the capability of the active species (OH, H, e_{aq} ,etc) of affecting on metal-complexes⁽²⁾. A large body of radiolysis of metalcomplexes in solutions have been reported⁽²⁻⁵⁾.

The direct gamma irradiation effects (without solvent)have been studied widely on some organic, biological and amorphous compounds⁽⁶⁻¹⁰⁾, whereas on the solid metal-complexes a few articles were reported⁽¹¹⁻²¹⁾

It was well-known that the reaction of the ligand molecule in coordination compounds have been affected by the central metal ions .The direct excitation of the complexes by an ionizing radiation can be expected in the radiolysis of crystalline complexes⁽¹¹⁾. The study on the radiolysis of crystalline metal complexes was also considered to be very helpful for the elucidation of the mechanism of the reaction affected by metal ions⁽¹²⁾. The anion (eg. $C_2O_4^{-2}$) in metal salt (eg. Na₂C₂O₄) was very stable to gamma ray irradiation, compared with those in metal-ligand (as metal oxalato) complexes . The fairly large reactivity of the complexes toward gamma irradiation may be attributed to the covalent character of ligand-metal bond . The ligand ions with large covalent character decomposed more easily by gamma irradiation^(11,13). The oxalato complexes were irradiated with gamma rays at room temperature $^{(11,14,15)}$. The much larger G values of Fe^{2+} and Co^{2+} complexes than that of Al³⁺ complex can not be explained only by the covalent character of the ligand-metal bond, but they seemed to be related with the reduction of metal ions . On gamma irradiation of Fe³⁺ and Co³⁺ complex, the reduction of the metal ions also occurred, and ferrous and cobaltous oxalate participitated when the irradiated complexes were dissolved in water . Therefore, the electron transfer from the ligand (oxalate) to metal ion might increase the radiationinduced decomposition of the ligand (oxalate). While in the case of gamma irradiation of chromium complex , the electron transfer from ligand (oxalate) to metal ion might be difficult and this might cause the lower G value of Cr³⁺ complex than those of Fe^{3+} and Co^{3+} complexes . But on the reaction of Cr^{3+} complex the oxidation of Cr^{3+} to Cr^{6+} might occur, and a fairly large amount of CO was formed inplace of CO₂ which was main product in the gamma irradiation of the oxalate complexes other than those with $Cr^{3+(15)}$.

A protective effect of certain metal ions on the enzymatic activity of gamma irradiated dry trypsin was first discovered⁽¹⁶⁾ . Subsequently, several studies on the effects of metal ions in decreasing the initial radical yields in various proteins, nucleic acid and related substances⁽¹⁶⁻²⁰⁾ were carried out . Complexes were consistent with the hypothesis that cupric ions were acting as electron scavengers⁽¹⁹⁾. The effect of copper (II), iron (II), nickel (II) and cadmium (II) ions on the gamma radiolysis of collagen and polyadenylic acid in the solid state were also investigated in the absence of $air^{(21)}$. The effect of metal ions were found in reducing the radiation-induced, decreasing of the average molecular weight and the formation of stable carbon radicals at room temperature⁽²¹⁾. There was a considerable degree of similarity between the effects of ions in preventing the radiation induced formation of carbon radicals and the decrease of average molecular weight in collagen and polyadenylic acid. For the

DNA-metal complexes, we have observed that metal ions decreased the initial radical vield at 77 ⁰K and at 298 ⁰K to approximately the same extent⁽¹⁸⁾. The effect of gamma radiation has been studied directly on the solid Schiff base-complexes of copper (II), cobalt (II) and nickel (II) resulting in ionization and excitation of complexes . Gamma-irradiation these the decomposition caused of some complexes and polymerization in the other complexes^(12,22)

The one-electron reduction of several metal bis-dithiolenes at the surface of TiO₂ particles have been studied using variable temperature EPR measurements following band-gap excitation of the particles showed the disappearance of signals due to paramagnetic Ni (III) and Cu (II) complexes of 4,5-dimercuptophthalic 3.4-dimercuptotoluene acid. and malconitrile dithiolate with the surface electron signals vanishing concomitantly . Similarly, the diamagnetic Cu (II) complex of 3,4- dimercaptotoluene was reduced to paramagnetic Cu (II) complexes⁽²³⁾. The triplet state has been studied for solid complexes⁽²⁴⁾.

To the best of available knowledge, the effect of gamma irradiation on some mixed ligand (semicarbazone and substituted carboxylic acid) complexes of cobalt (II) and nickel (II), have not yet been reported. It is a matter of interest to determine the extent to which gamma irradiation for these complexes would be affected.

Experimental

1. Preparation of the compounds :

The ligands salicylaldehyde semicarbazone⁽²⁵⁻²⁷⁾ and salicylaldehyde thiosemicarba- zone^(26,28-31) have been prepared according to the literature methods. The complexes in neutral and basic medium have been synthesised according to the previous methods ⁽²⁶⁻³¹⁾

2. Radiolysis of the complexes :

All gamma irradiation have been carried out using gamma cell-220 purchased from the Canadian Atomic Energy . The solid complexes were put in a fine cylindrical tubes and the tubes were sealed . Irradiation of the complexes have been carried out in different interval times (5, 10, 15, 20, 30, 40, 50 and 60 minutes) under 4.52×10^{16} ev. ml⁻¹. Min⁻¹ dose rate . The complexes before and after irradiation were dissolved in dimethyl- formamide (for comparison) in order to measure their absorbance and conductivities .

3. Conductivity and spectral measurements :

Molar conductivities of the complexes (before and after irradiation) have been measured in an electrolytic conductivity measuring set LF-42 and Multiline F/SET-2 WTW using 10⁻³ M dimethylformamide at room temperature

The electronic spectra of the complexes (before and after gammairradiation) in 10⁻⁴ M dimethylformamide solutions, have been recorded on Shimadzu UV-Visible Recording Spectrophotometer -160 and Shimadzu Double-beam Spectrophotometer UV-210A.

Results & Discussion

The radiolysis of solid matter caused ionization, ejection of electrons from some

atoms and exitation accompained by chemical reactions and decomposition .

 $[ML_n] \xrightarrow{\sim} [ML_n]^* , [ML_{n-y}]^+ +$ $_{Y}L^- , e$ (complex) (exited molecule) (ions)

(complex) (exited molecule) (ions) (ejected electron)

The effect of the coordinated ligands in the complexes was more reactive under ioniz-

ation radiation , i.e. the covalency between the ligand and metal was important for the reactivity of the ligands against ionizing radiation than the free ligand . In addition to the effect of covalency , the oxidation and reduction of the central metal ions affected the reaction mechanism of the ligand . Gamma-irradiation brought about the decomposition of the ligand, breakage of hydrogen bonding and a change in the oxidation state of metal ions , the decomposition could be completely giving gaseous liquid and solid products^(11-14, 22, 27)

The effect of ionizing radiation on some complexes containing mixed ligand in solid

state have been carried out by exposing these complexes to gamma radiation in different time intervals ranging between 5-60 minutes. The changes which happened in these complexes have been noticed by following the changes in melting or decomposition points , the changes in electronic spectra and the changes of molar conductivity before and after the exposure to ionizing radiation. Different effects for these complexes have been happened (Tables 1-10), some complexes have been resistant to radiation and others showed partial changes, while the other complexes showed noticed changes. The melting points of the complexes were measured directly after gamma irradiation, the changes observed were as follows :

complexes 1, 2, 7, 13, 17, 18, 20 and 24 showed changes in the melting or decomp-

osition points and a decrease in the molar conductivities values in addition to the appearance of another band in the electronic spectra of theinvestigated irradiated complexes, these changes may indicate the formation of oligomerersor polymers which considered indeed as a very interesting result . The reaction mechanism proposed for these complexes may be represented by the following reaction :

The polymerization process continued and the final product resulted is having the formula $[M_2(L)_2(S)_2X_n]_m$ (where M= the metal ion Co⁺² or Ni⁺², L= the carboxylic acid ligands, S= semicarbazone or thiosemicarbazone ligand, X= the counter ion in the investi- gated complexes, n= number of the counter ion, m= number of the complex molecules)

Complexes 3, 14, 15, 16, 23 and 25 showed changes in the melting or decomposition

points and a decrease in molar conductivities values but no addition bands in the electronic spectra appeared . These changes may be due to attachment of the counter ion by radiolysis which lead to the formation of oligomer or polymer . The proposed reaction mechanism may be represented by the following reactions :

$$\begin{split} & [M_2(L)_2(S)_2(NO_3)_2](NO_3)_2 & \longrightarrow \\ & \{ [M_2(L)_2(S)_2(NO_3)_2](NO_3)_2 \}^* & \longrightarrow \\ & \{ [M_2(L)_2(S)_2(NO_3)_2](NO_3)_2 \}^* & \longrightarrow \\ & \{ [M_2(L)_2(S)_2(NO_3)_2](NO_3)_2 \}^{1+*} + NO_3^{-1} \\ & \{ [M_2(L)_2(S)_2(NO_3)_2]^{2+*} + NO_3^{-1} \\ & \{ [M_2(L)_2(S)_2(NO_3)_2]^{2+*} + NO_3^{-1} \\ & \{ [M_2(L)_2(S)_2(NO_3)_2] \}^{2+*} \\ & + [M_2(L)_2(S)_2(NO_3)_2] (NO_3)_2 \longrightarrow [M_2(L)_2(S)_2(NO_3)_2]^{2+} \\ & + [M_2(L)_2(S)_2(NO_3)_2] + [M_2(L)_2(S)_2(NO_3)_2]^{2+} \\ & + [M_2(L)_2(S)_2(NO_3)_2] + [M_2(L)_2(S)_2(NO_3)_2] \\ & - M_2(L)_2(S)_2(NO_3)_2] \\ & [M_2(L)_2(S)_2(NO_3)_2] \\ & [M_2(L)_2(S)_2(NO_3)_2] \\ & [M_2(L)_2(S)_2(NO_3)_2] \\ & (M_2(L)_2(S)_2(NO_3)_2]^{2+} \\ & (M_2(L)_2(S)_2(NO_3)_2)^{2+} \\$$

Complexes 4, 6, 9, 11 and 22 showed a decrease in the melting or decomposition points and an increase in the molar conductivities values in addition to the appearance of new band in the electronic spectra of the irradiated complexes. The proposed reaction mechanism may be represented as follows:

 $\begin{bmatrix} M_2(L)_2(S)_2X_n] & \longrightarrow & [M_2(L)_2(S)_2X_{n-1}]^{+*} + X^{-1} \\ \begin{bmatrix} M_2(L)_2(S)_2X_{n-1}]^{+*} & \longrightarrow & \{ [M_2(L)_2(S)_2X_{n-2}]^{2+*} + X^{-1} \\ \begin{bmatrix} M_2(L)_2(S)_2X_{n-2}]^{2+*} + 2X^{-1} & \longrightarrow & \{ [M_2(L)_2(S)_2X_{n-2}]^{-1}X_2 \\ \end{bmatrix}$

Complexes 10, 12, 19, 27, 28 and 29 showed an increase in the melting or decomposition points and an increase in the molar conductivities values in addition to the appearance of new band in the electronic spectra of the irradiated complexes, this may be due to the decomposition of the dimeric complexes and either changed to

monomer or completely decomposed. The proposed reaction mechanism may be represented as follows:

$$\begin{split} & [M_2(L)_2(S)_2X_n] \sim \rightarrow \ [M_2(L)_2(S)_2]^{n+*} + nX^{-} \\ & [M_2(L)_2(S)_2X_n] + \ [M_2(L)_2(S)_2]^{n+*} \sim \rightarrow \ [M_2(L)_2(S)_2]^{n+} \\ & + \ [M_2(L)_2(S)_2]^{-} \\ & [M_2(L)_2(S)_2]^{-} \sim \rightarrow \ 2[M(L)(S)] \\ & 2[M(L)(S)]^{n+*} + nX^{-} \rightarrow \ 2[M(L)(S)]X \end{split}$$

Complexes 26 showed change in the melting or decomposition points and an increase in the molar conductivities values and changes in the absorbance but no band appeared in the electronic spectra of the irradiated complex, this may be due to the breakage of the hydrogen bonding and changes in the structure of the complexes.

Complexes 5 and 21 did not show any changes in the melting or decomposition points but showed an increase in the molar conductivities values in addition to the appearance of new band in the electronic spectra of the irradiated complexes, this may be due to the breakage of the hydrogen bonding. The proposed reaction mechanism may be represented as follows:

$$\begin{split} & [M_2(L)_2(S)_2X_n] & \longrightarrow \left[M_2(L)_2(S)_2X_{n-1}\right]^{.1+*} + X^{-} \\ & [M_2(L)_2(S)_2X_n] & + \left[M_2(L)_2(S)_2X_{n-1}\right]^{1+*} & \sim \rightarrow \\ & \{[M_2(L)_2(S)_2X_{n-2}]^{2+*} + X^{--} \\ & [M_2(L)_2(S)_2X_{n-2}]^{+2} + 2X^{--} \rightarrow \\ \end{split}$$

Table – 1 : Results of radiolysis for cobalt complexes prepared in neutral medium

Т*		1 ⁽²⁰	5,30)			2(2	6,30)			3(26,30)	
_	[Co ₂ (SH	$I_2)_2(SCH_2)$	$_{2}(NO_{3})_{2}]($	$(NO_3)_2$	[Co ₂ (An	H ₂) ₂ (SCH	$(1_2)_2(NO_3)_2$	$[(NO_3)_2]$	[Co ₂ (PH	$I_2)_2(SCH_2)$	$)_2(NO_3)_2]($	$NO_3)_2$
	M.P.	$^{\Lambda}M$	λ	А	M.P.	$^{\Lambda}M$	λ	А	M.P.	^ _M	λ	А
	°C	**	***	****	⁰ C	**	***	****	°C	**	***	****
0	117	103	395	1.686	180	73	385	1.610	150	136	380	1.483
5	114	32	395	1.616	196	35	385	1.086	149	21	380	0.864
							391	1.548				
10	114	36	395	1.614	192	38	385	1.065	135	15	380	1.495
							391	1.564				
15	119	40	395	0.958	180	40	385	1.174	125	5	380	0.848
			377	1.246			395	1.570				
20	129	35	395	0.942	174	50	385	1.182	120	6	380	0.649
			374	1.253			391	1.547				
30	126	38	395	1.333	178	45	385	1.035	118	5	380	1.136
			380	1.497			392	1.276				
40	124	45	395	1.470	185	52	385	1.103	114	2	380	0.959
			383	1.553			391	1.586				
50	130	52	395	1.520	182	32	385	1.147	112	15	380	1.215
			390	1.594			391	1.590				
60	140	56	395	1.556	176	30	385	1.032	112	20	380	1.649
			388	1.582			391	1.583				

M.P. : Melting points or decomposition points

* T: Time of irradiation

** M : Molar conductivities in Ω^{-1} cm² mol⁻¹

*** λ : Wave lengh in nanometer

**** A : Absorbance

T*		4	26,30)	-	–	5 ⁽²⁾	6,30)		6 ^(26,30)			
	[Co ₂ ($SH_2)_2(SC)$	$(H_2)_2(Ac)$)4	[Co ₂ (A	$nH_2)_2(SC)$	$(H_2)_2(Ac)$)4]	[Co ₂ (PI	$H_2)_2(SCH)$	$[_{2})_{2}(Ac)_{4}]$	
	M.P . ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****
0	284	11	409	1.661	286	16	416	1.640	270	0	408	1.643
5	n.m	32	409	1.346	286	30	416	1.113	180	2	408	1.096
			395	1.590			402	1.614			390	1.583
10	n.m	38	409	1.385	286	28	416	1.143	160	12	408	1.191
			395	1.604			402	1.605			393	1.595
15	260	54	409	1.385	286	24	416	0.908	180	3	408	0.840
			395	1.595			398	1.565			387	1.547
20	260	51	409	1.418	286	32	416	0.793	120	0	408	1.184
			395	1.593			398	1.546			393	1.594
30	260	44	409	1.171	286	29	416	0.785	120	10	408	1.050
			395	1.352			398	1.549			390	1.579
40	260	90	409	1.285	286	22	416	0.990	120	14	408	1.102
			395	1.572			400	1.568			398	1.588
50	260	41	409	1.447	286	20	416	0.843	140	14	408	1.022
			395	1.603			397	1.556			390	1.578
60	260	63	409	1.630	286	25	416	0.703	144	15	408	1.007
			395	1.622			397	1.523			390	1.580

Table – 2 : Results of radiolysis for cobalt complexes prepared in neutral medium

n.m. = not melt or decomposed at $265 \, {}^{0}C$

Table – 3 : Results of radiolysis for cobalt complexes prepared in neutral medium

T*		7(2	26,30)	-	ſ .	8(2)	6,30)			9 ⁽²	6,30)	
	[Co ₂ ($SH_2)_2(SC)$	CH ₂) ₂ (CO	3)2]	[Co ₂ (A	nH ₂) ₂ (SC	CH ₂) ₂ (CO	3)2]	[Co ₂ (PI	H ₂) ₂ (SCH	$(2)_2(CO_3)$	2]
	M.P ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****
0	275	26	408	1.656	270	28	410	1.638	210	0	407	1.646
5	n.m	7	408	0.779	n.m	35	410	1.638	210	40	407	0.573
			380	1.299							373	1.374
10	n.m	8	408	1.779	265	36	410	1.638	200	55	407	0.346
			380	1.299							366	1.063
15	260	11	408	1.205	262	38	410	1.638	195	65	407	0.458
			393	1.555							363	1.315
20	260	13	408	1.039	260	32	410	1.638	195	70	407	0.463
			390	1.499							364	1.193
30	260	13	408	0.644	295	35	410	1.638	190	68	407	0.361
			380	1.184							371	1.111
40	258	15	408	1.543	264	25	410	1.638	185	70	407	0.490
			387	1.543							363	1.241
50	258	15	408	1.219	268	30	410	1.638	178	61	407	0.533
			390	1.574							371	1.320
60	258	20	408	0.963	254	38	410	1.638	170	68	407	0.439
			383	1.510							372	1.248

Т*		10	(26,30)			11(2	26,30)			12(2	26,30)	
-		[Co ₂ (SH) ₂ (SCH)	,]	[Co ₂ (AnH) ₂ (SCH)	,]		[Co ₂ (PH)	o(SCH)	1
		2	,2()2	-1	L	20	,2()2	- 1			2()2.	,
	M.P	^M	λ	А	M.P.	^M	λ	Α	M.P.	^M	λ	А
	⁰ C	**	***	****	⁰ C	**	***	****	⁰ C	**	***	****
0	238	12	407	1.630	280	0	407	1.641	245	0	415	1.642
5	235	22	407	1.132	n.m	0	407	1.370	260	10	415	1.271
			385	1.575			392	1.610			391	1.612
10	230	22	407	1.206	n.m	0	407	1.394	260	5	415	1.394
			385	1.079			394	1.691			394	1.621
15	230	15	407	1.419	265	5	407	1.453	240	5	415	1.108
			385	1.600			392	1.623			388	1.592
20	250	12	407	1.439	265	12	407	1.423	235	8	415	1.502
			385	1.604			394	1.612			395	1.628
30	260	28	407	1.543	265	15	407	1.502	230	8	415	1.451
			385	1.626			394	1.628			394	1.622
40	262	14	407	1.557	265	10	407	1.529	228	0	415	1.291
			385	1.624			392	1.637			393	1.612
50	260	10	407	1.179	265	6	407	1.451	250	14	415	1.423
			385	1.540			394	1.620			397	1.621
60	260	10	407	1.392	245	10	407	1.390	260	5	415	1.620
			385	1.603			394	1.621			403	1.637

Table – 4 : Results of radiolysis for cobalt complexes prepared in basic medium

 Table – 5 : Results of radiolysis for cobalt complexes

 prepared in neutral medium

Т*		13(2	26,31)	-	Î	14(2	26,31)			15	(26,31)	
	[Co ₂ (SH	$(I_2)_2(STH_2)$	$_{2}(NO_{3})_{2}]($	$NO_3)_2$	[Co ₂ (Ar	nH ₂) ₂ (STH	$(1_2)_2(NO_3)_2$](NO ₃) ₂	[Co ₂ (PH	$I_2)_2(STH_2)$) ₂ (NO ₃) ₂]($(NO_3)_2$
	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^ _M **	λ ***	A ****
0	176	122	422	1.670	175	132	425	1.665	200	122	426	1.639
5	200	44	422	0.921	180	50	425	1.598	200	52	426	1.633
			424	1.220								
10	210	55	422	1.446	190	50	425	1.615	215	55	426	1.639
			428	1.624								
15	225	65	422	1.386	190	50	425	1.611	220	50	426	1.639
			428	1.626								
20	230	70	422	1.467	200	61	425	1.626	220	56	426	1.644
			428	1.631								
30	230	68	422	1.397	180	65	425	1.614	220	53	426	1.639
			428	1.634								
40	230	74	422	1.455	170	55	425	1.612	220	58	426	1.641
			428	1.636								
50	230	61	422	1.215	170	50	425	1.614	220	46	426	1.639
			428	1.634								
60	230	68	422	1.414	170	65	425	1.614	220	64	426	1.644
			428	1.639								

		P	cpui ci		cutiui	mean	****	
		16	(26)			17	(26)	
	[Ni ₂ (SH	$H_2)_2(SCH_2)$	$)_2(NO_3)_2]($	$(NO_3)_2$	[Ni ₂ (An	H ₂) ₂ (SCH	$_{2})_{2}(NO_{3})_{2}$	$(NO_3)_2$
Т*								
	M.P.	\wedge_{M}	λ	Α	M.P.	\wedge_{M}	λ	Α
	⁰ C	**	***	****	⁰ C	**	***	****
0	150	161	395	1.617	180	129	398	1.627
5	80	50	395	1.609	160	31	398	1.302
							380	1.502
10	160	35	395	1.394	145	50	398	1.573
							380	1.597
15	110	45	395	1.240	140	35	398	1.641
20	146	35	395	1.444	138	35	398	1.623
30	130	40	395	1.325	130	45	398	1.617
40	120	45	395	1.526	128	61	398	1.647
50	120	54	395	1.607	142	52	398	1.621
60	110	45	395	1.626	132	65	398	1.607

 Table – 6A : Results of radiolysis for nickel complexes

 prepared in neutral medium

 Table – 6B : Results of radiolysis for nickel complexes

 prepared in neutral medium

		18(26)			19	(26)	
	[Ni ₂ (SF	H_2) $_2(SC)$	H2)2(A	c)₄]	[Ni ₂ (A	nH2)2(SCH ₂) ₂	(Ac)₄]
Т*	L 2(-	2)2(2)2(- /-1	L 2(2)2(2)2	
1	MD		2		140		2	
	M.P.	^M	٨	A	M.P.	^M	Y	A
	°C	**	ት ት	* * * *	°C	**	***	* * * *
0	245	30	391	1.622	290	5	400	1.630
5	260	6	391	0.913	n.m	20	400	1.412
			398	1.033			384	1.622
10	260	2	322	1.592	n.m	21	400	1.916
15	260	3	391	1.516	n.m	29	400	1.594
			382	1.592				
20	260	0	391	1.542	n.m	23	400	1.418
			382	1.592			381	1.572
30	260	5	391	2.472	n.m	12	400	1.065
			382	1.582			379	1.413
	260	5	391	1.502	n.m	17	400	0.970
40			382	1.582			374	1.371
50	260	0	391	1.580	n.m	18	400	1.465
			382	1.580			383	1.577
60	260	0	391	1.541	n.m	24	400	0.948
			382	1.592			366	1.321

Т*		20	$0^{(26)}$		•	21	(26)			22	(26)	
	[Ni ₂ (S	SH ₂) ₂ (SC	$H_2)_2(CO)$	3)2]	[Ni ₂ (At	$H_2)_2(SC)$	$H_2)_2(CO_2)$	3)2]	[Ni ₂ (PF	H ₂) ₂ (SCH	$_{2})_{2}(CO_{3})_{2}$	2]
	M.P	^M	λ	Α	M.P.	^M	λ	Α	M.P.	^M	λ	А
	⁰ C	**	***	****	⁰ C	**	***	****	⁰ C	**	***	****
0	270	27	390	1.616	n.m	5	407	1.646	290	16	402	1.634
5	260	17	390	1.025	n.m	25	407	0.863	260	20	402	1.586
							390	1.302				
10	256	17	390	0.877	n.m	18	407	0.282	260	28	402	1.527
							390	0.495			400	1.603
15	254	16	390	0.927	n.m	30	407	1.203	255	52	402	1.578
							395	1.501			400	1.589
20	252	17	390	1.074	n.m	28	407	1.124	250	40	402	1.590
							395	1.460			400	1.615
30	244	17	390	1.075	n.m	26	407	1.201	246	42	402	1.592
							395	1.503			400	1.615
40	240	15	390	0.185	n.m	31	407	1.266	240	30	402	1.581
			354	1.023			395	1.515			408	1.680
50	240	25	390	1.185	n.m	30	407	1.353	238	32	402	1.586
							395	1.553			408	1.603
60	240	16	390	0.134	n.m	30	407	0.614	235	34	402	1.580
			354	0.958			390	1.007			400	1.601

Table – 7 : Results of radiolysis for nickel complexes prepared in neutral medium

 Table – 8 : Results of radiolysis for nickel complexes

 prepared in neutral medium

Т*		23(2	26,27)	-	Î.	24(2	26,27)			25	(26,27)	
1	[Ni ₂ (SH	23 (STH ₂)	2(NO ₃)2]($NO_3)_2$	[Ni ₂ (An	H ₂) ₂ (STH	$_{2})_{2}(NO_{3})_{2}$](NO ₃) ₂	[Ni ₂ (PH	2) ₂ (STH ₂)	$(NO_3)_2](1)$	$NO_3)_2$
	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^M **	λ ***	A ****	M.P. ⁰ C	^ _M **	λ ***	A ****
0	165	120	409	1.648	143	130	425	1.661	185	160	413	1.644
5	165	38	409	1.644	140	63	425	1.392	184	48	413	1.206
							379	1.584				
10	165	38	409	1.643	150	63	425	0.980	184	50	413	1.284
							374	1.505				
15	162	30	409	1.641	150	65	425	1.024	190	35	413	0.943
							375	1.540				
20	170	32	409	1.643	170	60	425	1.002	190	47	413	1.642
							374	1.531				
30	168	40	409	1.639	150	63	425	1.112	190	48	413	1.540
							377	1.555				
40	160	39	409	1.636	150	68	425	1.980	190	50	413	1.232
							374	1.520				
50	156	34	409	1.631	150	67	425	1.144	190	54	413	1.408
							375	1.565				
60	156	31	409	1.630	150	69	425	1.196	190	58	413	1.204
							374	1.552				

Т*		26	(26,27)	-	•	27(2	26,27)			28(2	26,27)	
	[Ni ₂ (S	SH ₂) ₂ (ST	$H_2)_2(CO_2)$	3)2]	[Ni ₂ (At	$H_2)_2(ST)$	$H_2)_2(CO_3)$	$_{3})_{2}]$	[Ni ₂ (PH	$I_2)_2(STH)$	$_{2})_{2}(CO_{3})_{2}$]
	M.P	^M	λ	Α	M.P. ^M λ A ⁰ C ** *** ***					^M	λ	А
	⁰ C	**	***	****	⁰ C	**	***	****	⁰ C	**	***	****
0	260	11	425	1.648	264	24	425	1.629	n.m	24	425	1.621
5	260	36	425	1.644	n.m	51	425	0.953	n.m	48	425	0.873
							367	1.538			370	1.374
10	245	30	425	1.643	260	34	425	0.861	265	55	425	0.921
							367	1.430			370	1.446
15	258	10	425	1.641	256	14	425	0.792	260	44	425	0.975
							367	1.400			370	1.371
20	236	8	425	1.643	260	25	425	0.714	254	38	425	0.948
							367	1.375			370	1.412
30	258	20	425	1.639	262	20	425	0.686	256	23	425	1.230
							367	1.453			374	1.572
40	260	47	425	1.636	n.m	29	425	0.784	236	11	425	1.065
							367	1.461			370	1.413
50	260	54	425	1.631	n.m	30	425	0.813	264	50	425	1.371
							367	1.483			370	1,521
60	260	50	425	1.630	240	35	425	0.844	264	52	425	0.938
							367	1.517			370	1.577

Table – 9 : Results of radiolysis for nickel complexes prepared in neutral medium

Table – 10 : Results of radiolysis for nickel complexes prepared in basic medium

Т*		29	(26,27)	-		30(2	26,27)			31(26,27)	
		[Ni ₂ (SH	(STH) ₂	2]	[Ni ₂ (AnH) ₂ (STH) ₂	2]		[Ni ₂ (PH))2(STH)2]
			I			I		1				
	M.P	^M	λ	A	M.P.	^M	λ	A	M.P.	^M	λ	A
	°С	**	***	****	°С	**	***	****	°С	**	***	****
0	290	10	422	1.646	n.m	17	423	1.660	n.m	10	415	1.665
5	n.m	30	422	1.357	n.m	16	423	1.647	n.m	15	415	1.652
			424	1.584								
10	n.m	30	422	1.357	n.m	12	423	1.648	n.m	13	415	1.652
			424	1.584								
15	n.m	30	422	1.262	n.m	15	423	1.640	n.m	18	415	1.654
			424	1.579								
20	n.m	28	422	1.240	n.m	12	423	1.648	n.m	15	415	1.652
			426	1.590								
30	n.m	29	422	1.183	n.m	14	423	1.655	n.m	14	415	1.654
			424	1.466								
40	n.m	20	422	1.185	n.m	17	423	1.654	n.m	16	415	1.653
			424	1.523								
50	n.m	25	422	1.095	n.m	10	423	1.653	n.m	13	415	1.653
			426	1.556								
60	n.m	22	422	1.094	n.m	14	423	1.647	n.m	17	415	1.653
			428	1.563								

Complexes 8, 30 and 31 did not show noticable changes with increasing the time of irradiation, this is a very good point and having benefit since these complexes resist the radiation and not affected by ionizing radiation.

According to the observed results . We could propose the following⁽³²⁻³⁴⁾ : In the complexes that resist gamma rays, we suggest the occurance of ion pair formation leadind to back reaction between emitted positive electrons and ions. In the compound containing electron with drawing groups⁽³²⁾ on aromatic phenyl ring, we could notice that these groups could decrease the stability of the positive ions formed by gamma ray, i.e., increasing their activities towards neutralization with the trapped electrons in the molecules in solid state. Therefore a kind of repairing and removal of gamma-irradiation effects may have happened in the complexes containing electron with drawing groups . In the complexes containing electron donating groups, in addition to the changes in the intensity of electronic spectra, there have been also changes in molar conductivities and melting points . The increase in molar conductivities refers to the increase in decomposition of the complexes while the decrease in molar conductivity may be attributed to recombination of ionization products giving rise to dimers, oligomers or polymers⁽³²⁻³⁴⁾.

Conclusion

From the above studies we could conclude three types of effects :

1- Some complexes have been decomposed giving either monomers or may have been decomposed completely by gamma-irradiation .

2- Other complexes were resistant to the ionizing radiation of gamma-rays due to back reaction between positive ions and emitted electrons.

3-Other complexes polymerized by gamma-irradiation .

References

1-T. Henriksen and H. D. Maillie ; Radiation & health , Taylor & Francis , London and New

York, 2003, 152.

2- M. Basu Roy, P. C. Mandal and S. N. Bhattacharyya ; *Int. J. Radiat. Biol.*, 1996, **69**, 471 .

3- A. Rios, M. Villagran, J. Costamagna and G. Ferraudi ; *J. Coord. Chem.*, 2003, **56(14)**, 1233.

4- A. R. M. Carlos, A. A. Ferro, H. A. S. Silva, M. G. Gomes, S.S.S. Borges, P.C. Ford, E.

founi and D.W. Franco ; *Inorg. Chem. Acta* , 2004, **357**(**5**), 1381 .

5- Y. T. Mahmood, Mosul University, 2004

6- Z. Cheng and J. A. LaVerne ; *J. Polym. Sci. B. Polym. Phys.* ; 2001, **39**, 1449 .

7- Z. Cheng and J. A. LaVerne ; *Radiat. Phys. Chem.*, 2001, **62**, 19.

8- V.K. Jamadar, S.N. Jamadar, H. Mohan, S.P. Dandeka and P. Harikumar ; *Radiat. Phys.*

Chem., 2004, **69(6)**, 473.

9- Z. Ajji and H. Al-Kassiri ; *Aalam Al-Zarra*, 2004, 93, 92.

10- P. Benzi, E. Bottizzo, L Operti and P. Volpe ; *CAHEM. Mater.*, 2004, **16(6)**, 1068

11- A. Sugimori and G. Tsuchihashi ; *Bulletin Chem. Soc*.(Japan); 1961, **34**, 449 . 12- I. J. Sallomi , A. A. Al-Obaydi and Z. F. Dawood ; *J. Edu. Sci.* , 1999, **38** , 4 .

13- M. Z. Hoffman and M. G. ; *J. Amer. Chem. Soc.* ; 1972, 94 , 1754 .

14- H. Sano , N. Matsabara and N. Saito ; *Bull. Chem. Soc. Japan* ; 1965, **38** , 333 .

15- A. Sugimori ; *Bulletin Chem. Soc.* (Japan) ; 1966, **39** , 2583 .

16- J. A. V. Butler and A. B. Robins ; *Radiat. Res.*, 1963, **19**, 582.

17- P. R. Crippa and A. Vgeli ; *Int. J. Radiat. Biol.*, 1972, **22**, 105.

18- E. Rotlevi , H. M. Moss , S. Kominami and P. Riesz ; *Ann. N. Y. Acad. Sci.* ; 1973, **222** , 387 .

19- S. Kominami and P. Riesz ; *Radiat. Res.*, 1974, **58**, 154.

20- P. Riesz ; *Biochem. Biophys. Res. Commun.* ; 1966, **23** , 273 .

21- F. Friedberg , S. Kominami, A. K. N. Nandedkar and P. Riesz ; *Radiat. Res.*, 1975, **61**,55.

22- Z. F. Dawood ; "Preparation, characterization of some Schiff base metal complexes and

their radiolytical studies" Ph . D.Thesis , Mosul University , 1998 .

23- S. Kapoor, S. Kartha and D. Meisel; *Res. Chem. Intermed.*; 2001, **27(4,5)**, 317

24- M. Barra, C. De Visser, A.M. Swartz and C. Zaharia ; *Arkivov* (Gainesville, FL, U.S), 2003,

10, 48.

25- A. I. Vogel ; "Textbook of practical organic chemistry"; Longman Green , London , 3rd . ed.

,344,345 (1964).

26- M. W. Ibrahim ; "Preparation of cobalt(II) and nickel(II) complexes containing mixed

ligands and their radiolytical studt" M. Sc. Thesis, Mosul University, 2002, 33,34. 27- Z. F. Dawood and M. W. Ibrahim, *Raf. J. Chem.*, 2005 (Accepted).

28- B. C. Mahto ; *Indian Chem. Soc.*, 1981, **8**, 935.

29- K. H. Shukla , N. C. Desai and K. A. Thaker ; *J. Indian Chem. Soc.*; 1984, **6**, 168

30- Z. F. Dawood and M. W. Ibrahim ; "Preparation of some cobalt (II) complexes containing

mixed ligands (salicylaldehyde semicarbazone and carboxylic acids)", Under press.

31- Z. F. Dawood and M. W. Ibrahim ; "Preparation of some cobalt (II) complexes containing

mixed ligands (salicylaldehyde thiosemicarbazone and carboxylic acids)", Under press.

32- A. T. Ghani ;The study of tautomerisom and radiolysis of some Schiff base and their

complexes", Ph. D. Thesis, Mosul Univesity (2000).

33- M. Barra, C. De Visser, M. Swartz and C. Zaharia; *Arkivoc* (Gainesville, FL, U.S.), 2003, **10**, 48

34- K. Tanaka, N. Yukimura and K. Narasaki; *Bull. Chem. Soc. Jpn.*, 2004, **77(3)**, 575.