Determination of Some Physical and Chemical Properties for Different Samples of Petroleum Lubricants

Luma Majeed Ahmed Dept. of chemistry, college of science, University of Kerbala Kerbala - Iraq.

(NJC)

(Received on 25/6/2006)

(Accepted for publication on 18/2/2007)

Abstract

Some physical and chemical properties for the different samples of lubricants oil for sewing machines, lubricants oil for car's engine before and after burn process such as, density (d), Specific gravity (Sp. gr.), standard density (API), dynamic viscosity (η), Kinematics viscosity (ν), Fludity (Φ), Refractive index (R.I), the percentage of ash (%Ash), acidity and basicity for the different samples of petroleum lubrications were determined.

The heat of combustion (gross calorific value) (Q), heat of Latent (L) and the percentage of hydrogen (%H) for the same samples were calculated also.

Introduction

Oil used in an engine must serve as: 1) a lubricant to reduce friction, corrosion and wear, 2) a coolant, 3) a vehicle for removing impurities ⁽¹⁾, 4) reducing operating temperatures under full load,

The properties of lubricate ⁽⁴⁾ are different by modifying the structure of it as increasing the length of chain, adding side chain and adding cyclic groups, all that will increase the

5) increasing component life and 6) reduce energy consumption⁽²⁾.

Most lubrication oils ⁽³⁾ are a mixture consisting predominantly of hydrocarbons and compounds containing sulphur, nitrogen, oxygen and trace metals as minor constituents. viscosity and decrease the viscosity index.

The lubrication oils ⁽¹⁾ in modern engines must operate over an extreme temperature range and should

be non-toxic and non-explosive, all that will prove by employing additives such as (5, 6) antioxidant (amines, phenols), corrosion inhibitor, detergent and dispersant (Ca, Ba compounds, soaps), alkalinity (Ca. Ba hydroxides), antibacterial (biocides), Oiliness or wetting agents (fatty oils, chlorinated Extreme pressure wax), agents (organic compounds of Cl, S, P (hydraulic, gear oil)), pour point depressant (organic polymers), antifoam (silicanes), viscosity index

improvers (organic polymers) and emulsifying agent (polar compounds).

The lubrication oil used as a cheap source of fuel to the urban poor enterprises and households by employing drip method⁽⁷⁾.

The characteristics of lubrication oil depended on its crude oil. It is different from oil field to other oil field, that indicated to different in a constituation of it, that was explained in the table(A):^(8,9)

The elements	Element composition
	Wt % range
Carbon	83.9 - 86.8
Hydrogen	11 - 14
Sulfur	0.06 - 8
Nitrogen	0.02 - 1.7
Oxygen	0.08 -1.82
Metals	0.0 - 0.14

Table (A): The element Composition in (Wt %) range for crude oil

The many researchers studied how to increase the ratio of hydrogen to carbon in petroleum to increase the product energy, according to the following equation (10-12)

Mrena and Coworkers⁽¹³⁾ found the some physical and chemical properties of lubrication oils like net calorific value, gross calorific value Sp.gr at 30 and 60° C, viscosity at 30 and 60° Cetc.

Hamdon⁽¹⁴⁾ produced the activated carbon from spent Lubricating oil by employing oxidation condensation process.

Hendy and Coworkers⁽¹⁵⁾ studied the chemical changes which occurred in oil emulsion by the action of eight different species of bacteria isolated, that changed the standard

$$C_nH_m + 9H_2 \xrightarrow{(543-723)^oK} 2C_nH_{\frac{m}{5}}H_{\frac{m}{2}+a}$$

a=constant depended on the type of hydrocarbon product.

engineering performance for oil emulsion and increased the rust formation and corrosion of steel samples.

Experimental Part

- A- <u>Instruments</u>: The employed instruments are:-
- 1) Digital balance (Sartorius, Bp- 2015-Germany).
- 2) Water bath, (W 350-Germany).
- 3) Refrectrometr, (Atago 1T-Japan).
- 4) Furnace, (mke- Pe 100 Canada).

B-Materials and Procedure:

Six samples were studied, according to the table (B):

No	Sample	Countries	Colour
1	Lubricants oil for sewing machines	Iran	Pale- yellow
2	2 Lubricants oil for sewing machines		Light- yellow
3	Lubricants oil for sewing machines	Iraq	Brown –yellow
4	Lubricants oil for car's engine before burn	Germany	Yellow-brown
5	Lubricants oil for car's engine before burn	Iraq	Green- brown
6	Lubricants oil for car's engine after burn	Iraq	Black-brown

*The mechanical properties were determined such as, density (d), specific gravity (Sp. gr.), standard density (API), dynamic viscosity (η), kinematics viscosity (ν) and fluidity (Φ).

The densities(d) (at 15 °C and 38 °C) were measured by pyknometer method according to the equation(1) $^{(16)}$:

 $\rho_{D,W}$ = the densities of D.W.

The specific gravity was found by equation $(2)^{(13)}$:

The degree (API) gravity was determined at 15 $^{\circ}$ C by American Petroleum Institute of the following equation ^(17,18):

API Scale =
$$\frac{141.5}{\text{Sp.gr.}(15^{\circ}\text{C})} - 131.5$$
(3)

Dynamic (absolute) viscosity $(\eta)^{(16)}$ is determined by the time of flow of studied samples and D. W at 38 °C.

The kinematics viscosity $(\nu)^{(19)}$ is calculated by dividing the dynamic viscosity (η) to the density (d) at 38 °C.

$$\nu = \frac{\eta}{d} \qquad (at 38 °C) \qquad \dots \dots (5)$$

The fluidity (Φ) was calculated by employing equation(6)^(16,19) $\Phi = \frac{1}{\eta}$ (at 38 °C)(6)

* The optical property, refractive index (R.I) was measured at 20 $^{\circ}$ C by employing Abbi refractometer, so the R.I is regarded as an indicator of light- colored liquid petroleum products ⁽²⁰⁾.

*The acidity and basicity were measured by titration method ⁽²¹⁾:

%
$$H = 26 - (15 \ x \ Sp. gr.)$$
 (at $15 \ ^{\circ}C(60 \ ^{\circ}F)$)(8)

*The thermal property, heat of combustion (gross calorific value) (Q) and heat of Latent (L) were calculated by equations $(9,10)^{(23)}$:

$$Q = 12400 - (2100 \times (Sp.gr)^{2}) \quad (at \ 15 \ ^{\circ}C(60 \ ^{\circ}F)) \qquad \dots \dots \dots (9)$$
$$L = \frac{1}{Sp.gr} \times (110.9 - 0.09 \ t) \quad (at \ t = 60 \ ^{\circ}F) \qquad \dots \dots \dots \dots (10)$$

*The % Ash was measured by following equation $(11)^{(24)}$:

%
$$Ash = \frac{W_{sample after burn}(g)}{W_{sample before burn}(g)} \times 100$$
(11)

Results and Discussion

Table(1-A): Some mechanical	properties (d, Sp.g	r & API) for stu	idied samples at
$(t = 15 \pm 1^{\circ}C)$			

No. of	Density	Specific gravity	API
samples	(g/ mL)	(Sp. gr)	
1	0.88577	0.87354	30.4845
2	0.85178	0.84001	36.9503
3	0.86746	0.85548	33.9042
4	0.91877	0.90608	24.6672
5	0.98581	0.97219	14.0476
6	0.92177	0.90904	24.1587

* $\rho_{D,W} = 1.0140 \text{ gm/mL}$

From the previous table, the sp. grs for all samples were approved with the standard range $^{(25)}$ (0.85 – 0.97) except sample (2) due to presence of a

low amounts of nephthene compounds (24).

The sp.gr of sample (6) was low compared with sample(5) that beyond to break its molecules during the burning process at 260- 400 $^{\circ}$ C in engine of car which cause the dissociation of its⁽²⁶⁾.

According to the standard range for API (>15)^(23, 25, 27), that refereed to approve with the API for all samples except sample (5) due to the same reason.

Table(1-B): Some Mechanical Properties (d, η, ν, Φ) for studied samples at $(t = 38 \pm 1 \ ^{o}C)$

No. of samples	Density (g/ mL)	(η) Poise	(v) cSt	(Φ) poise ⁻¹
1	0.8084	0.6740	83.3745	1.4836
2	0.8482	0.3700	43.6215	2.7027
3	0.8648	0.3955	45.77326	2.5284
4	0.8728	1.2176	139.5050	0.8212
5	0.9143	2.0108	219.9278	0.4973
6	0.6390	1.4559	227.84037	0.6868

 $\rho_{D.W} = 0.99497 \text{ gm/mL}$

According to the results in table (1-B), the density is decreased with the temperature, because oils are expansion with increased temperature⁽²⁸⁾.

In general, the standard range for kinematics viscosity equal $(15-150 \text{ cSt})^{(23)}$. But the kinematics viscosity for samples (5) is very high, may be a cause for the amount and the nature of additives which add as anti-oxidant, anti-corrosion, anti-microbiology, equilibrium matters and emulsion matter^{(29, 30).}

The sample 6 was had a high value of Kinematics viscosity that due to corrode the iron of engine's car during the burning processes.

The fluidity of sample (3) is more than fluidity of sample (5), that referees to a low dynamic viscosity.

Table(2): The optical properties (Colour and refractive index) for studied sample at $(t = 20 \ ^{o}C)$

No. of	Colour	R.I
samples		At 20°C
1	Pale yellow	1.474405
2	Light yellow	1.472405
3	Brown-yellow	1.473405
4	Yellow- brown	1.462038
5	Green-brown	1.494540
6	Black-brown	-

According to the results in	of they were employed in lubrication
table(2), that occurred the values of R.I	process for the car's engine, that may
of samples 1,2 and 3 were very close to	be a cause to the amount and the nature
each other, because they are light oils	of additives ^{(29, 30).}
which used as lubrication for sewing	
machine.	The sample 6 wasn't showed a
	value of P I that beyond to corrode

But the R.I for sample 4 is smaller than R.I for sample 5, in spite

The sample 6 wasn't showed a value of R.I that beyond to corrode the iron of engine's car during the burning processes with the time.

Table (3): The values of basicity and acidity for the studied samples at $(t = 30 \ ^{\circ}C)$.

No. of samples	Basicity M	Acidity M
1	-	0.0100
2	-	0.0020
3	-	0.0016
4	-	0.006
5	-	0.002
6	-	0.094

According to results in table (3), the values of acidity were most lower to prevent the corrosion process in sewing machine and car engine.

The acidity for sample 6 was highest than acidity for other samples, that beyond to exist some oxygen compounds as result to react the lubricant with atmosphere oxygen during burned it in engine car, to give peroxide compound^(24, 31), the increase in acidity will cause the corrosion in engine's car therefore, the spent lubricating oils will replace^(32, 33).

Table(4): The values of percentage for %Ash of studied samples.

No. of	%Ash
samples	
1	0.860
2	0.280
3	0.592
4	30.120
5	25.020
6	26.080

From table(4) the results referred that %Ash are greater than the standard range $(< 0.1)^{(22)}$, due to presence of higher amount of inorganic metal like (Ni, Znetc.) ⁽²⁴⁾ during separation and purification processes in refineries.

No. of	L	Q	%H
samples	Btu. Pound ⁻¹	Kcal.Kg ⁻¹	
1	121.554	10797	12.8960
2	126.622	10876	13.3998
3	124.234	10863	13.1670
4	116.995	10674	12.4088
5	134.591	10415	11.4171
6	116.596	10664	12.3644

Table(5): The values of thermal properties (L, Q and %H) at $(t = 15 \ ^{o}C, \ 60 \ ^{o}F)$

 $Btu^{(34)}$:Britain temperature unit = 778 ft. Ib.

According to the results in table (5), the %H in all samples were within the standard range⁽²⁾ (11.8-13.3) except sample (5) due to additives.

The heats of combustion for all samples were within standard range⁽²³⁾ (10504- 10882) Kcal. Kg⁻¹ except

References

- 1- W. W. Pulkrabek, *Engineering Fundamentals of the Internal Combustion Engine*, Prentic Hall, USA, 1997.
- 2- D. Laue, *Machinery Lubrication Magazine*, May, 2001.
- 3- F. J. Villforth, *Lubricants and Librication* 8th ed., Mc Grow Hill, 1978.
- 7- H. T. Kimweri, Technical and Environmental assessment concering the Technology of Utilization of waste oil as fuel, Dar es Salaam, 1993.

sample (5), due to its high sp. $gr^{(22)}$. The heats of latent for all samples were fixed with the standard range ⁽²³⁾ (111-124) Btu. Pound⁻¹ except sample (5)⁽²²⁾ due to the same reason.

- 4- E. F. Obert, Internal Combusion Enginers and Air Pollution, 3rd ed., Harper and row, New York, 1973.
- 5- Y. C. Tuck, Marine engineer word, *Lubrication oil*, WWW. Practicingdanalysis. Com, 2004.
- 6- T. Yoon, Marine engineer word, Additives that improve lubrication oils, WWW. Freemarine. Com and WWW. Freeengineering.com., 2006.
- 8- G. D. Hobson and W. Pohl, *Modern Petroleum Technology*, 4th ed., Applied Science Publishers LTD., 1975.

- 9- C. F. Mabery, *Ind. Eng. Chem.*, 1923, **15**, 314.
- 10- W. Balthasar, Hydrogen Production and Technology: Today, Tomorrow and beyond, Int. J. Hydrogen Energy, 1984, 9, 649.
- 11- C. W. Bowman, M. P. Duplessis, The Canadian Synthetic Fuel Industry- A. Major user of hydrogen, Int. J. Hydrogen Production, 1986, 11, 43.
- 12- K. Wlesener, The Chemical and Industrial use of hydrogen, Int. J. Hydrogen energy, 1986, 11, 1301.
- 13- G. D Mrema, P. P. Van Schijndel and F. J. Janssen, IET (Institution of Engineers Tanazania), 2000.
- 14- A. A. Hamdon, *Nati. J. of Chem.*, 2005, **18**, 216.
- 21- L. G. Hargis, **Analytical chemistry**, principles and techniques, prentice-Hall, Inc., London, 1988.
- 22- R. H. Perry, C. H. Chilton and S. d. Kirpotrick, Chemical Engineers Handbook, McGraw Hill book Co., New York, 1963.
- 23- A. S. Rahim, **Ph. D Thesis**, Sulaimani University (2003).

. . -24

.1981

- 15- W. A. Hendy, N. K. Al-Hadary and A. K. Hendy, *Nati. J. of Chem.*, 2002, 8, 510.
- 16- O. F. Steinbach and C. V. King, Experimental in Physical Chemistry, American BookCompany, New York, 1950..
- 17- Annual book of IP standard, **Density and relative density**, 14th ed, 1981, Vol. 1, IP 59.
- 18- Annual book of IP standard, Standard method of test for density, specific gravity, or API gravity of crude petroleum and liquid petroleum products, 14th ed., 1981, Vol. 1, IP 160.
- 19- A. Findlay, **Practical Physical chemistry**, 18th ed., Longmans, London, 1966.
- 20- A. L. Ward and S. S. Kurtz, Ind. Eng. Chem., 1938, 10, 559.
- 25- Herguth Laboratories, inc, WWW. Herguth.Com, 2006.
- 26- J. D. Bushnell and R. J. Fiocco, *Hydrocarbon Process*, 1980, 59(5), 119.
- 27- W. A. Crusse and D. R. Steven, Chemical Technology of Petroleum, 3rd ed., McGrow Hill, New York, 1960.
- 28- K. A. Al-Ganam, K. I. Al-Neaime and A. A. Hamdon, *J. Sci. and Edu.*, 2004,16(3).
- 29- J. O. Cookson, *Tribol. Int.*, 1977, **10**, 5.

- 30- S. Foxal-Van Aken, J. A. Brown, W. Young and R. H. Olsen, *Appl. Environ. Microbial.*, 1986, **51**, 1165.
- 31- P. A. Asseff, Petroleum Additives and their functions, Lubrizol Corp., Cleveland Ohio, April, 1966.
- 32- S.Borenstein, icrobiologically Influenced Corrosion

Handbook, Woodhead Publishing Ltd, Cambridge, London, 1994.

- 33- R. P. Gangloff and R. G. Kelly, *Corrosion*, 1994, **50**(5), 345.
- 34- R. L. Dangherty, J. B. Fanzini and E. J. Finnemore, Fluid Mechanics with Engineering Application, 8th ed., McGraw-Hill, Inc, New York, 1985.