Z.F. DAWOOD^{*} and Y.T. MAHMOOD *Chemistry Department, Education College, Mosul University, Mosul-Iraq

(NJC)

(Received on 26/4 /2006) (Accepted for publication on 5/7/2006)

Abstract

Complexes of the type $[Cu(B`SCH)(LH)]CO_3$ and [Cu(B`SC)(L)] have been prepared in neutral and basic medium, respectively {where B`SCH= benzoin semicarbazone, B`SC=deprotonated B`SCH ligand, AH= one of the substituted salicylic acid : salicylic acid (A₁H), 2-acetylsalicylic acid (A₂H), 3,5-dinitrosalicylic acid (A₃H), 5-aminosalicylic acid (A₄H) or 5-sulphosalicylic acid (A₅H), A= deprotonated AH ligand}. The resulted complexes have been characterized physico-chemically.

The effect of gamma rays have been studied on these complexes under conditions where the hydroxyl radicals were scavenged by sodium formate solution and in presence of nitrogen gas. The electronic spectral data and molar conductivities indicated that copper (II) ion may be reduced to copper (I) and presence of charge transfer between the metal ion and the ligands in some complexes. In addition some complexes have been completely decomposed and some of them polymerized while the others did not affected during the selected time of irradiation.

$$[Cu(B`SC)(A)] [Cu(B`SCH)(AH)]CO_3$$

B`SCH = B`SC = B`SCH }
-2 (A_1H) : = AH
-5 (A_4H) -5 (A_3H) -5.3 (A_2H)
. { AH = A (A_5H)
. -
(I) (II)
.

Introduction

A good deal of work has been reported on the preparation and structural investigation of semicarbazones and their complexes⁽¹⁻³⁾. This is due to their capability of acting as multidentate donor with the formation of either mono- or bior poly-nuclear complexes^(4,5). In addition

to their interesting ligational properties, semicarbazones and their complexes have important biological activities⁽⁶⁻⁸⁾. A wide studies have been done on substituted salicylic acid complexes⁽⁹⁻¹¹⁾ due to their interesting ligational properties.

There has been growing interest in the formation of mixed ligands chelates ligands containing different involving donation sites such as sulfur, oxygen and nitrogen of different functional groups⁽¹²⁻ ¹⁵⁾. On the other hand, coordination compounds with mixed ligands are of considerable importance in the field of metalloenzymes and other biological $activities^{(16,17)}$. Hence a large body of the coordination chemistry of mixed ligands with transition and non-transition metal ions have been reported recently⁽¹²⁻²⁰⁾. Due to the importance of mixed ligands complexes, we took a humble part in the chemistry of mixed ligand complexes and some articles have been published so on their coordination chemistry with transition and non-transition metal ions⁽²¹⁻²⁴⁾.

Copper and it's compounds have been used for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients⁽²⁵⁾. Since some complexes have been involved in biological system though some of these systems involved reducing free radicals. The hydrated electron and hydrogen atom have been capable to reduce the central metal ion⁽¹⁶⁾. There has been considerable interest, recently, in the radiolysis of copper(II) complexes^(26,27).

In the present work, new copper (II) complexes containing mixed ligands {benzoin semicarbazone - B'SCH and substituted salicylic acids A_1H , A_2H , A_3H , A_4H or A_5H } have been prepared and characterized physico-chemically. The effect of gamma irradiation on such complexes have not yet been reported, therefore, it is a matter of interest to determine the extent to which gamma irradiation for these new complexes would be affected.

Experimental Synthetic Methods :

Benzoin semicarbazone B'SCH has been prepared according to literature method⁽²⁸⁾. A general procedure has been adopted for the preparation of the complexes in neutral and basic medium. I- In neutral medium: A solution of 1g (8.1X10⁻³ mole) of copper carbonate in 5 ml. water has been added to the solution of 2.3968g (8.1X10⁻³ mole) of benzoin semicarbazone and 8.1X10⁻³ mole of one of the substituted salicylic acids in 15 ml. hot ethanol (the amounts in grams were listed in Table 1). The mixtures have been refluxed for three hours followed by evaporation to half their volumes then cooled. The products were filtered off, washed with petroleum ether $(60^{\circ}, 80^{\circ})$ and dried .

II- In basic medium: Complexes of the type [Cu(B`SC)(A)] have been prepared by applying same amounts used in neutral medium, after mixing the metal salts with the ligands and heating on a water bath, potassium hydroxide solution (1.0 M) has been added until pH of the solutions were 8-9. The mixtures have been heated on a water bath for half an hour then allowed to stand then cooled. The products were filtered off, washed with petroleum ether (60°, 80°) and dried.

Analytical and physical measurements :

Copper contents have been determined by applying precipitation method after the decomposition of the complexes with concentrated nitric acid ⁽²⁹⁾. Relative molecular weights of the ligands and their complexes have been determined cryoscopically⁽³⁰⁾.

Conductivity measurements have been carried out with Multiline F/SET-Z WTW Wissenschaf using 1.0x10⁻³ M dimethylformamide solution at 25 °C. The infrared spectra has been recorded on a Pye-Unicam 1100 Infrared Spectrophotometer in the range 400 - 4000 cm⁻¹ using KBr pellets. Electronic spectra has been recorded on Shimadzu UV-210A Spectrophotometer for 1.0x10⁻³ M solutions of the ligands and their complexes in dimethylformamide at 25°C, using a 1 cm cell. Magnetic susceptibility of the complexes have been measured by Bruker B.M6.

Radiolysis of the Complexes :

All the solutions of the copper (II) carbonate, ligands and complexes have been prepared using 1.0×10^{-3} M sodium formate solution in triply distilled water (neutral medium) or 1.0×10^{-3} M sodium formate and 1.0×10^{-1} M sodium hydroxide solution in triply distilled water (basic medium). The solutions were saturated with nitrogen gas. All gamma irradiations have been carried out using gamma cell-220 purchased from the Canadian Atomic Energy. The absorbed dose has been determined using Fricke dosimeter⁽³¹⁾. The dose rate was 2.7×10^{16} eV.ml⁻¹min⁻¹.

Results and Discussion

The reaction of copper (II) carbonate, benzoin semicarbezone and the substituted salicylic acids in 1:1:1 molar ratio in both neutral and basic medium can be represented by the following reactions :

 $CuCO_3 + B$ 'SCH + AH \rightarrow [Cu(B'SCH)(AH)]CO₃

 $CuCO_3 + B`SCH + AH + 2KOH \rightarrow$ $[Cu(B`SC)(A)] + K_2CO_3$

(where AH=any one of the substituted salicylic acid A_1 H or A_2 H or A_3 H or A_4 H or A_5 H; A=deprotonated AH ligands; B`SCH =benzoin semicarbazone; B`SC⁼ deprotonated B`SCH).

The resulted complexes were colored solid, slightly soluble in water, ethanol and soluble in dimethylformamide. Copper contents and relative molecular weights revealed that the complexes had the composition $[Cu(B`SCH)(AH)]CO_3$ and [Cu(B`SC)(A)]in neutral and basic medium, respectively (Table 1). The values of the molar conductivities (78-91 and 22-29 Ω^{-1} cm² mol⁻¹) approached those expected for 1:2 and non electrolytes⁽³²⁾ for complexes prepared in neutral and basic medium, respectively. The room temperature (25 ^oC) magnetic moments (1.3-2.2 B.M.)

indicated the presence of one unpaired electron and assigned to a monomeric structure having distorted octahedral geometries⁽³³⁾.

infrared The spectra of semicarbazone ligand showed a strong band at 1620 cm⁻¹ attributed to C=N group was shifted towards a lower frequency on coordination due to the decrease of the bond order as a result of metal nitrogen bond formation^(5,34). The next strong band at 1700 cm⁻¹ which is attributed to C=O group shifted towards a lower frequency on coordination, in neutral medium, indicating the formation of chelation between the carbonyl oxygen and the metal $ion^{(4,34)}$. Whereas in basic medium, this band was disappeared in the complexes and a new band has been observed at 1430 cm⁻¹ due to bending enolic OH thereby establishing the coordination of the ligand through the enolic oxygen $atom^{(4,5,34)}$. The appearance of strong bands at 1635-1640 cm⁻¹ and 1575-1585 cm⁻¹ attributed to $v_{C=N} + v_{O-C=N}$ and azine chromophore C=N-N=C, respectively, supported the formation of enolic structure in basic medium $^{(4,5,34)}$. The band observed at 3200-3300 cm⁻¹ assigned to v_{NH} remained unaltered in the complexes prepared in neutral medium indicating that there is no coordination through the NH group, Whereas this band was disappeared in the complexes prepared in basic medium due to the enolic form $^{(4,5)}$. The other bands observed at 3390, 3410 cm⁻¹ and 1450 cm⁻¹ assigned to v_{NH2} and δ_{NH2} , respectively, remained unaltered on complexation indicated the absence of coordination of this group with the metal $ion^{(4,5)}$. Infrared spectra of substituted salicylic acids showed two bands at 1375-1390 cm⁻ and 1575-1595 cm⁻¹ assigned to the symmetric and asymmetric stretching frequency of carboxylic group, respective-

Irequency of carboxylic group, respectively. On complexation these bands shifted to lower frequencies (Table 2). The difference between the symmetry and asymmetry stretching vibration for CO_2^-

difference between the symmetry and asymmetry stretching vibration for CO₂⁻ group ($\Delta v = 110$ or 170-180 cm⁻¹) indicated that CO2 group coordinated to the central metal ion in bidentate or monodentate manner^(34,35), respectively. The next bands observed at 3500-3600 cm⁻¹ and 2900 cm⁻¹ assigned to the stretching vibrations of carboxylic OH and phenolic OH, respectively. On complexation, a negative shift of the order 30-40 cm⁻¹ were observed for these two bands in the complexes prepared in neutral medium, whereas for the complexes prepared in basic medium a negative shift were observed for only $v_{OH(ph)}$ and the disappearance of $v_{OH(carb.)}$ was observed due to the deprotonation of the acid and formation of ionic form $^{(11,34,35)}$. The band observed at 1730 cm⁻¹ in A₂H ligand due to $v_{C=O}$ was shifted to lower frequency in the order 35-40 cm⁻¹ in the complexes (3, 4) indicating that there has been coordination through the carbonyl $oxygen^{(34-36)}$ with the metal ion .

The complexes in neutral medium showed a band at 1490 cm⁻¹ due to the ionic bonding of carbonato group^(34,35). Whereas, the complexes prepared in basic medium did not showed this band indicating the absence of CO_3^{2-} group.

On the other hand the spectra of all the complexes showed new bands at 500-550 and 600-720 cm⁻¹ due to v_{Cu-N} and v_{Cu-O} , respectively⁽³⁴⁻³⁷⁾. The presence of these bands supported the formation of the complexes under investigation.

The electronic spectra of the complexes (Table 3), showed one broad band centered at 13888-14084 cm⁻¹ due to the transition ${}^{2}E_{g} \rightarrow {}^{2}T_{2g}$ of ${}^{2}D$ state⁽³⁸⁾. This band has been comparable both in position and width with the earlier reported octahedral complexes. Since the eg state has been highly affected by Jahn Taller effect, therefore, copper(II) complexes had distorted octahedral geometry (^{38,39}). 10Dq and C.F.S.E have been determined⁽³⁷⁾ depending on the energy level diagram for d⁹ configuration (Figure

1)⁽⁴⁰⁾. Since $10Dq = \Delta_0 = \upsilon(\text{in cm}^{-1})$. The value of C.F.S.E was determined by applying the following equation : C.F.S.E. = - ($6x0.4x\upsilon$) - (- $3x0.6x\upsilon$)

Figure 1: Energy level diagram of Cu(II)

Radiolysis of copper (II) carbonate in sodium formate solution and in presence of nitrogen gas for 5 min (Table 4) caused a decrease in the conductivity and a change in electronic spectra in neutral medium, this may be due to the following reaction :

 CO_2 $\overline{}/\mathrm{e}_{\mathrm{aq}}^+ + \mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}^{+1} + \mathrm{CO}_2$

Increasing the time of irradiation, the conductivity was changed which may be due to the reaction of .OH, after the consumption of formate solution, with copper (I) and forming copper (II). Continuous irradiation caused reversible reaction.

The results in basic medium (Table 4) indicated that OH reacted with OH⁻ forming $O^{-(41)}$ which interacted with HCOO⁻ as follows :

 $OH + OH^- \rightarrow O^- + H_2O$

 $O^- + HCOO^- \rightarrow OH^- + CO_2^-$

and hence CO_2 and \dot{e}_{aq} reduced Cu (II) to Cu (I) leading to a decrease in conductivity and change in electronic spectra. Increasing time of irradiation Cu (I) oxidized to Cu (II) at 50 min. The results of gamma irradiation of the ligands (Tables 4, 5) in formate solution and in presence of nitrogen gas have been lead to a slight changes in conductivities and in absorbance but the wavelengths have been not changed except the salicylic acid. The general reaction may be suggested as follows :

 $L + CO_2^{-} \rightarrow L^- + CO_2$

 $L + e_{aa} \rightarrow L^{-}$

 $L^- \rightarrow$ decomposition (increase in conductivity)

 $L^+ L \rightarrow (L-L^-)$ association (decrease in conductivity

The reducing radicals CO_2^{-1} and e aq may have attacked the ligand and the reduced ligands may be either decomposed or associated leading to an increase or a decrease in the values of the molar conductivities⁽⁴¹⁻⁴³⁾, respectively. In basic medium (Table 4, 5) the so formed $O^$ reacted with HCOO⁻ as indicated before. CO_2 and e_{aq} may be reacted with the forming either ligands molecular association or decomposition of the ligands which caused either a decrease or increase in the values of the molar conductivities, respectively.

Irradiation of the complexes in formate solution and in presence of nitrogen gas caused changes in conductivity and electronic spectra for complex 1-4. This may be represented as follows : $[Cu^{11}(B`SCH)(AH)]^{2+} + CO_2^{-7} / e_{aq} \rightarrow$ $[Cu^{I}(B`SCH)(AH)]^{+} + CO_2$ $[Cu^{11}(B`SCH)(AH)]^{+} + CO_2^{-7} / e_{aq} \rightarrow$ $[Cu^{I1}(B`SC)(A)] + CO_2^{-7} / e_{aq} \rightarrow$

When the irradiation continued the conductivity and electronic spectra have been changed supporting the formation of polymer^(36,41-43). Irradiation of the comp-

lexes 5 and 6 did not show any changes in the electronic spectra and only a very slight changes in conductivities which could be neglected. This supported the resistance of these complexes to the effect of gamma radiation during the selected period time in the study. Irradiation of complexes 7-10 caused changes in conductivities only, indicating the decomposition of such complexes which may be represented by the following reactions : $[Cu^{II}(B`SCH)(AH)]^{2+} \rightarrow Cu^{II}+B`SCH+AH$

 $[Cu^{II}(BSC)(A)] \sim Cu^{II} + BSC + A$

Conclusions

According to the analytical, physico-chemical studies, some observations have been achieved that lead to establish the following points :

1-Benzoin semicarbazone acted as tridentate chelating ligand on coordination with copper(II) ion through the azomethinenitrogen and the two oxygen atoms of the carbonyl and alcoholic groups .

2-Substituted salicylic acids acted as tridentate chelating ligands.

3-Carbonato group was presented in the complexes as counter ion.

4- Copper (II) ion has been probably hexacoordinated, leading to distorted octahedral geometry (Figure 2).

5-The effect of gamma rays could be summerised as follows :

I-Reduction of the complexes 1-4, leading to the formation of polymer.

II-Complex 5 and 6 were not affected. III-Decomposition of the complexes 7-10.

Figure 2 : Model structure of the complexes

 A_1 , A_2 = in neutral medium , B_1 , B_2 = in basic medium

No	Complex	wt of AH (g)	Medium	% yield	Color	m.p or d* °c	∧ 	Cu Calc./ (obs.)	M.Wt Cal./ (obs).	µ _{eff} ●
1	[Cu(B`SCH)(A ₁ H)]CO ₃	1.1174	Neutral	98.14	Brown	109	82	11.97 (11.10)	530.5 (490.0)	2.1
2	$[Cu(BSC)(A_1)]$	1.1174	Basic	97.52	Yellowish green	160	27	17.23 (16.50)	468.5 (453.0)	2.0
3	[Cu(B`SCH)(A ₂ H)]CO ₃	1.4575	Neutral	96.03	Olive	106	78	9.28 (8.90)	572.5 (533.0)	2.1
4	[Cu(B`SC)(A ₂)]	1.4575	Basic	97.32	Yellowish brown	140 d	29	13.85 (13.10 0	510.5 (490.0)	2.2
5	[Cu(B`SCH)(A ₃ H)]CO ₃	1.8462	Neutral	95.78	Yellowish brown	110 d	91	10.23 (9.50)	620.5 (584.0)	1.3
6	$[Cu(BSC)(A_3)]$	1.8462	Basic	96.11	Yellowish green	140 d	26	13.85 (13.30)	558.5 (533.0)	1.8
7	[Cu(B`SCH)(A ₄ H)]CO ₃	1.2389	Neutral	97.14	Brown	103 d	80	11.64 (11.20)	545.5 (533.0)	2.0
8	$[Cu(BSC)(A_4)]$	1.2389	Basic	97.43	Black	124 d	22	16.56 (15.80)	383.5 (350.0)	1.4
9	[Cu(B`SCH)(A ₅ H)]CO ₃	1.7652	Neutral	96.89	Pale green	120 d	82	10.40 (9.80)	610.5 (584.0)	1.3
10	$[Cu(BSC)(A_5)]$	1.7652	Basic	95.23	Yellowish green	178 d	23	11.16 (10.80)	448.5 (409.0)	1.6

Table 1 : Amounts, physical and analytical results

• yield = (experimental weight of the complex / theoritical weight of the complex) x 100 Theoretical weight of the complex =[(Molecular weight of complex)(weight of metal salt)] / (molecular weight of metal salt)

* d = decomposition temperature

** M = molar conductivity in ohm⁻¹ cm² mol⁻¹

• μ_{eff} = magnetic moment in Bohr magneton

Comp.	UC=N Semi	UNH₂ Semi	UC=O Semi	UC-O Semi	υ _{COO} (s)*	UCOO ⁻ (as)**	Δυ	บNH บO-H acid	υ _{C-O} (alc.)	VCu-O	VCu-O
B`SCH AH	1620	1455	1700	-	1375- 1390	1575- 1595	200- 205	3200-3300 3500-3600	1250	-	-
1	1520	1455	1650	-	1410	1520	110	3200-3300 3500-3600	1300	550	650, 700
2	1520	1455	-	1250	1420	1530	110	3500-3600	1300	550	650, 700
3	1510	1455	1640	-	1420	1590	170	3200-3300 3500-3600	1300	500	650, 700
4	1540	1455	-	1250	1410	1590	180	3500-3600	1300	500	625, 700
5	1530	1455	1650	-	1410	1520	110	3200-3300 3500-3600	1280	500	600, 720
6	1530	1455	-	1275	1400	1510	110	3500-3600	1300	500	650, 700
7	1520	1455	1640	-	1420	1530	110	3200-3300 3500-3600	1300	500	650, 720
8	1540	1455	-	1230	1400	1510	110	3500-3600	1300	525	675, 710
9	1510	1455	1640	-	1420	1530	110	3200-3300	1300	500	650, 700
10	1520	1455	-	1230	1410	1520	110	3500-3600	1300	500	600, 700

Table 2 : IR spectral data of the ligands and their complexes (values in cm⁻¹)

• s = symmetric ; ** as = asymmetric

No.	C.T (cm ⁻¹)	0 (cm ⁻¹)	10Dq (cm ⁻¹)	C.F.S.E *
1	32000	13888	13888	8332.8
2	31950	13888	13888	8332.8
3	32100	14084	14084	8450.4
4	32000	14084	14084	8450.4
5	34100	13888	13888	8332.8
6	34000	13888	13888	8332.8
7	29000	13888	13888	8332.8
8	28800	13888	13888	8332.8
9	31500	13888	13888	8332.8
10	31450	13888	13888	8332.8

 Table 3 : Electronic spectral data of the complexes

*C.F.S.E = (6x 0.4x13888) - (3x 0.6x13888) = 8332.4; C.F.S.E = (6x 0.4x14084) - (3x 0.6x14084) = 8450.4

Tuble 1 Tradition results of CuCoy and D Self in formate solution (1) Las	LCO3 and B 'SCH in formate solution (N ₂ gas)
---	--

		CuCO ₃ Neu	tral		CuCO ₃ B	asic	B.8	SCH Neu	tral	B'SCH Basic		
Т	^ _M	λ (nm)	А	^ _M	λ (nm)	А	^M	λ (nm)	А	^ _M	λ (nm)	А
0	3.2	820, 710, 270	0.03, 0.05, 0.61	9.8	295	0.88	3.3	325	0.96	2.0	275	0.81
5	3.0	308	0.54	9.8	295	0.88	3.2	325	0.95	2.1	275	0.81
10	3.1	308	0.55	7.9	305	0.76	3.9	325	0.95	2.6	275	0.82
15	2.1	310	0.50	8.8	260, 305	0.68, 0.80	3.8	325	0.96	2.6	275	0.80
20	3.0	650, 310	0.04, 0.52	9.8	295	0.86	3.8	325	0.94	2.6	275	0.80
30	2.5	310	0.55	8.2	295	0.85	1.6	305	0.85	1.1	275	0.70
40	3.1	310	0.50	9.4	295	0.86	3.0	305	0.85	1.5	275	0.72
50	3.3	310	0.53	9.2	610, 300	0.075. 0.70	3.1	305	0.85	1.5	275	0.72
60	3.2	310	0.54	9.2	300	0.70	3.1	305	0.85	1.6	275	0.71

T = Time of radiation, $\Lambda_{\rm M}$ = molar conductivity *10⁴ in ohm⁻¹ Cm² mol⁻¹, λ =wave length, A= absorbence

Table 5 : Radiolytical results of A_1H and A_2H ; formate solution (N_2 gas)

	Α	₁ H Neut	ral	A	A ₁ H Basi	c	A ₂	H Neutr	al		A ₂ H Basi	c
Т	^ _M	λ (nm)	А	^ _M	λ (nm)	А	^ _M	λ (nm)	А	^ _M	λ (nm)	А
0	1.30	270	0.63	1.10	230	0.72	1.60	280	0.62	1.00	220	0.90
5	1.20	270	0.63	1.00	230	0.72	1.50	280	0.60	1.00	220	0.88
10	1.00	275	0.60	1.00	230	0.71	1.30	280	0.61	0.80	220	0.90
15	0.90	275	0.61	0.80	230	0.7	1.00	280	0.61	0.70	220	0.89
20	0.90	310 270	0.51 0.60	0.70	290 230	0.42 0.70	1.90	280	0.60	0.70	220	0.89
30	0.75	310 270	0.50 0.60	0.65	290 230	0.42 0.70	0.75	280	0.62	0.50	220	0.90
40	0.50	310 270	0.50 0.60	0.40	290 230	0.42 0.70	0.60	280	0.62	0.40	220	0.90
50	0.40	310 270	0.50 0.60	0.30	290 230	0.42 0.70	0.50	280	0.62	0.20	220	0.90
60	0.20	310 270	0.50 0.60	0.20	290 230	0.42 0.70	0.40	280	0.62	0.20	220	0.90

	A ₃	H Neutr	al	1	A ₃ H Bas	ic	A4	A ₄ H Neutral		A ₄ H Basic			A ₅ H Neutral			A ₅ H Basic		
Т	^M	λ (nm)	А	^M	λ (nm)	А	^M	λ (nm)	А	^M	λ (nm)	А	^M	λ (nm)	А	^ M	λ (nm)	Α
0	2.50	300	0.60	1.10	240	0.85	2.10	270	0.8	1.7	290	0.65	1.1	210	0.45	1.0	230	0.3
5	2.50	300	0.60	1.00	240	0.85	2.00	270	0.8	1.5	290	0.65	1.3	210	0.45	1.2	230	0.3
10	2.30	300	0.60	1.00	240	0.85	2.00	270	0.8	1.2	290	0.65	1.3	210	0.45	1.2	230	0.3
15	2.50	300	0.60	1.20	240	0.85	1.80	270	0.8	1.2	290	0.65	1.6	210	0.45	1.2	230	0.3
20	2.40	300	0.60	1.10	240	0.85	1.70	270	0.8	1.0	290	0.65	1.8	210	0.45	1.3	230	0.3
30	2.40	300	0.60	1.10	240	0.85	1.70	270	0.8	0.9	290	0.65	1.9	210	0.45	1.5	230	0.3
40	2.50	300	0.60	1.00	240	0.85	1.50	270	0.8	0.6	290	0.65	2.1	210	0.45	1.9	230	0.3
50	2.50	300	0.60	1.10	240	0.85	1.20	270	0.8	0.4	290	0.65	2.5	210	0.45	2.2	230	0.3
60	2.50	300	0.60	1.10	240	0.85	1.20	270	0.8	0.2	290	0.65	3.0	210	0.45	2.4	230	0.3

Table 6 : Radiolytical results of A₃H, A₄H and A₅H ; formate solution (N₂ gas)

Table 7 : Radiolytical results of complex 1 -4 ; formate solution (N₂ gas)

		Comple	ex 1	Comp	olex 2			Complex	3	Complex 4			
Т	^M	λ (nm)	А	^M	λ (nm)	А	^M	λ (nm)	А	^M	λ (nm)	А	
0	4.1	790, 300	0.082, 0.75	3.0	880, 210	0.065, 0.90	6.3	610, 290	0.07, 0.70	4.5	700, 250	0.04, 0.85	
5	3.6	300	0.75	2.7	880, 210	0.064, 0.91	5.5	290	0.71	4.1	700, 250	0.04, 0.83	
10	3.3	300	0.74	2.3	880, 210	0.065, 0.90	5.0	290	0.69	3.8	700, 250	0.04, 0.86	
15	2.9	300	0.74	2.0	880, 210	0.065, 0.92	4.3	290	0.70	3.3	250	0.84	
20	2.4	300, 345	0.75, 0.51	1.8	210, 320	0.95, 0.78	3.5	290	0.70	2.8	250	0.85	
30	1.8	300, 345	0.75, 0.51	1.4	210, 320	0.91, 0.77	2.9	290	0.70	2.2	250	0.85	
40	1.2	300, 345	0.74, 0.52	1.1	210, 320	0.91, 0.78	2.4	290, 320	0.70, 0.58	1.9	250, 305	0.85, 0.91	
50	0.8	300, 345	0.74, 0.52	0.6	210, 320	0.91, 0.78	1.8	290, 320	0.70, 0.56	1.4	250, 305	0.84, 0.90	
60	0.3	300, 345	0.75, 0.51	0.2	210, 320	0.90, 0.78	1.2	290, 320	0.70, 0.58	0.6	250, 305	0.85, 0.90	

Table 8 : Radiolytical results of the complexes 5, 6; formate solution (N₂ gas)

	Comp	lex 5					Complex 6						
Т	^M	^M*	λ (nm)	λ* (nm)	А	A*	^M	^M*	λ (nm)	λ* (nm)	А	A*	
0	2.1	2.1	700, 220	700, 220	0.05, 0.91	0.05, 0.90	0.9	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
5	2.1	2.0	700, 220	700, 220	0.05, 0.91	0.05, 0.90	0.9	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
10	2.1	2.1	700, 220	700, 220	0.05, 0.91	0.05, 0.90	1.0	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
15	2.0	2.0	700, 220	700, 220	0.05, 0.91	0.05, 0.90	0.9	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
20	2.0	2.0	700, 220	700, 220	0.05, 0.91	0.05, 0.90	1.0	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
30	2.2	2.1	700, 220	700, 220	0.05, 0.91	0.05, 0.90	0.8	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
40	2.2	2.0	700, 220	700, 220	0.05, 0.90	0.05, 0.90	0.8	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
50	2.0	2.0	700, 220	700, 220	0.05, 0.90	0.05, 0.90	1.0	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	
60	2.1	2.0	700, 220	700, 220	0.05, 0.90	0.05, 0.90	1.0	0.9	640, 210	640, 210	0.08, 0.70	0.08, 0.70	

• = Data after one hour of irradiation

		Complex 7			Comple	ex 8
Т	^M	λ (nm)	А	^M	λ (nm)	А
0	4.6	675, 325	0.06, 0.77	2.0	600, 300	0.07, 0.60
5	5.0	675, 325	0.05, 0.76	2.3	600, 300	0.07, 0.60
10	5.4	675, 325	0.06, 0.76	3.0	600, 300	0.071, 0.60
15	6.1	675, 325	0.065, 0.78	3.4	600, 300	0.072, 0.62
20	6.8	675, 325	0.058, 0.77	4.0	600, 300	0.07, 0.61
30	7.5	675, 325	0.06, 0.79	4.5	600, 300	0.07, 0.60
40	8.1	675, 325	0.06, 0.77	4.9	600, 300	0.07, 0.60
50	8.8	675, 325	0.062, 0.77	5.2	600, 300	0.07, 0.61
60	9.3	675, 325	0.06, 0.77	6.0	600, 300	0.072, 0.61

Table 9 : Radiolytical results of the complexes 7, 8 ; formate solution (N₂ gas)

Table 10 : Radiolytical results of the complexes 9, 10; formate solution (N₂ gas)

				Complex 9)		Complex 10						
T^*	^M	^M*	λ (nm)	λ* (nm)	А	A*	^M	^M *	λ (nm)	λ* (nm)	А	A*	
0	2.5	2.5	700, 250	700, 250	0.035, 0.80	0.035, 0.80	1.0	1.0	790, 290	790, 290	0.02, 0.62	0.02, 0.60	
5	3.1	3.0	700, 250	700, 250	0.034, 0.80	0.035, 0.80	1.6	1.5	790, 290	790, 290	0.02, 0.62	0.02, 0.60	
10	3.5	3.5	700, 250	700, 250	0.035, 0.81	0.035, 0.80	2.3	2.5	790, 290	790, 290	0.02, 0.61	0.02, 0.60	
15	4.1	4.0	700, 250	700, 250	0.035, 0.80	0.035, 0.80	3.0	3.0	790, 290	790, 290	0.02, 0.60	0.02, 0.60	
20	4.8	4.5	700, 250	700, 250	0.035, 0.81	0.035, 0.80	3.5	3.5	790, 290	790, 290	0.02, 0.60	0.02, 0.60	
30	5.4	4.5	700, 250	700, 250	0.035, 0.82	0.035, 0.80	3.9	4.0	790, 290	790, 290	0.02, 0.61	0.02, 0.60	
40	6.2	6.0	700, 250	700, 250	0.035, 0.80	0.035, 0.80	4.5	4.5	790, 290	790, 290	0.02, 0.60	0.02, 0.60	
50	7.1	7.0	700, 250	700, 250	0.035, 0.80	0.035, 0.80	5.2	5.2	790, 290	790, 290	0.02, 0.60	0.02, 0.60	
60	8.0	8.0	700, 250	700, 250	0.035, 0.80	0.035, 0.80	6.5	6.5	790, 290	790, 290	0.02, 0.60	0.02, 0.60	

References

D.D. Yin, Z.W. Wang and L. Shan;
 Chinese J. Chem.; 2000,18 (3), 364.
 G. de Sousa, J. Valdeoe-Martinez, G.E.
 Pirez, R.A. Toscano, A. Abras and C.A.L.
 Filgueiras; J. Brazilian Chem. Soc.;
 2002, 13(5), 559.

3- P Gupta, F. Basuli, S.M. Peng, G.H.
Lee and S. Bhattacharya; Inorg. Chem.;
2003, 42 (6), 2069.

4- Y. Kumar and S.P. Tolani; Croat. Chem. Acta; 1989, 62, 73.

5- N. Kanoongo, R.V. Singh and J.P. Tandon; J. Synth. React. Inorg. Met-Org. Chem.; 1987, 17 (8 &9) 837.

6- J. Patole, S. Dulta, S. Padhye and E. Sinn; Inorg. Chim. Acta; 2001, 318, 207. 7- B.K. Rai, H.C. Rai, D.C. Baluni, P. R. Prasad and A. Kumar; Oriental J. Chem.; 2002, 18(3), 575. 8- J. Patole, Sh. Padhye, S. Padhye, C.J. Newton, Ch. Anson and A.K. Powell; Indian J. Chem.; 2004, 48A (80), 1654. 9- S. Jagner, R.G. Hazell and K.P. Larsen; Acta Cryst. B; 1976, 32, 548. 10- D.A. d'Avignon and T.L. Brown; Inorg. Chem.; 1982, 21, 3041. 11- N.G. Palaskar, D.V. Jahagirdar and D.D. Khanolkar; J.Indian Chem. Soc.; 1975, 14, 134. 12- A. Sanayl, A. Saha, N.M. Tra, P. Shine-Ming, L. Gene-Hsiang and S. Goswami; Indian J. Chem. Sect. A, 2004, **43**(8), 1595. 13- Y. Yao, G. Cai, H. Li, D. Wang, R. Yu, Y. Chen and X Xing; Chem. Soc. Japan; 2004, 33(10), 1270. 14- T. Ghosh, A. Roy, S. Bhattacharya and S. Banerjee; Trans. Metal Chem.; 2005, **30**(4), 419. 15- R.N. Randey and R.N. Sharma; Oriental J. Chem.; 2004, 20(1), 185. 16- W. por Mel, Y. Liu, J. Li, K.Zheng and L. Ji; Trans. Metal Chem.; 2005, **30**(1), 82. 17- I.M. Saidul, H.M. Motahar, B.L. Arjuman, C. Sultana and M. Abdu Quadir; Oriental J. Chem.; 2004, 20(1), 55.

18- J. Casas, A. Castineiras, M.C. Rodrigues-Arguelles, A. Sanchez, J. Sordo, A. Vazquez-Lopez, S. Pinelli, P. Lunghi, P. Ciancianaini, A. Bonati, P.Dall Aglio and P. Albertini; J. Inorg, Biochem.; 1999, 76 (3-4), 277. 19- V. Tsukahara, T. Kamatani, T. Suzuki and S. Kaizaki; Dalton Transactions; 2003, 7, 1276. 20- F.S.M. Hassan; Arabian J. Sci. & Eng.; 2005, 30(1A), 29 . 21- Z. F. Dawood; J. Sci & Tech.; 2002, 17, 35. 22- Z.F. Dawood, S.H. Hussein and M. A. Al-Shamma; Sci. & Tech. A; 2004, 12, 71. 23- Z.F. Dawood and M.W. Ibrahim ; Raf. J. Sci.; 2006, 17(2), 8. 24- Z.F. Dawood and M.A. Al -Shamma'a; Al-Taqani J.; 2006,19(1), 23. 25- J.R.J. Sorenson; Chem in Britain; 1989, 170 . 26- A. Beltelheim and M. Faraggi; Radiat. Res.; 1977, 72, 71. 27- R.M. Sellers; J. Chem. Educ.; 1981, 58, 114. 28- A.I. Vogel; Textbook of Practical Organic Chemistry; Longman Green, London, 1964, 3rd ed., 344 . 29-A.I. Vogel; Textbook of Ouantitative Inorganic Analysis; Longman Inc., New York, 1981, 4th ed., 427, 463 .

30-J.W. Danials; Experimental Physical Chemistry; McGraw - Hill, 1962, 6th ed., 81. 38- V.S. Shrivastava, C.P. Bhasin and 31- H. Frick and F.J. Hart; J. Chem. Phys.; 1935, 30, 60. 32- W.J. Geary; Coord. Chem. Rev.; 1971, 7, 81. 33- B.R. Petrovic and D.M. Petrovic; **63**, 198. J. Coord. Chem.; 1982, 11, 239. 34- K. Nakamoto; Infrared and Raman Spectra of Inorganic and Coordination 1978, 2nd ed. Compounds", John Wiley and Sons, New York 1976, 3rd ed.

35- G.A. Wilkinson, R.D. Gillard and McCleverty; Comprehensive J.A. Coordination Chemistry; Pergamon press, Oxford, England, 1987, Vol. 2, 1st ed., 435-456, 414-417, 447.

36- M.W. Ibrahim; MSc. Thesis; Mosul University, 2002, 33, 42, 47-53.

37- Y.T. Mahmood; M. Sc. Thesis; Mosul University, 2004, 52-57.

G.C. Saxena; J. Indian Chem. Soc.; 1986, 63, 865.

39- A. Gahlot, S. Sharma and R.K. Mehta; J. Indian Chem. Soc.; 1986,

40- J.E. Huheey; Inorganic Chemistry; Harper & Row Publishers, New York,

41- Z.F.Dawood Al-Tayy; Ph. D. Thesis, Mosul University, 1998, 92-114.

42- M.G. Simic, M.Z.Hoffman and N.V. Brezniak; J. Amer . Chem. Soc.; 1977, 99, 2166.

43- I.G. Draganic and Z.D. Draganic; The Radiation Chemistry of Water; Academic Press, New York, 1971.