Vibration Frequencies , Normal Coordinates and IR Absorption Intensities of 1-; 1,2-; 1,3- and 1,2,3- Methylene Cyclobutane Dirivatives

Rehab M. Kubba, S. H. Rida and A. H. Hanoon Department of Chemistry, College of Science, University of Baghdad, Jadiriya, Baghdad, Iraq.

(NJC)

(Received on 16/9/2004)

(Accepted for publication on 22/6/2005)

Abstract

SCF-MO calculations of the vibration frequencies and IR absorption intensities, applying the MINDO/3-FORCES method, are reported for the four molecules, mono-, di- (1,2- and 1,3-), and 1,2,3-trimethylene cyclobutane. In addition, normal coordinate analysis of all vibration modes is described for each molecule. The obtained results allow interesting correlations between the frequencies of similar modes as calculated for the different methylene cyclobutanes.

MINDO/3-

Introduction

The molecules for which calculations were done, are cyclobutane derivatives in which one, two or three

 CH_2 groups are replaced by one, two or three $C=CH_2$ to form **mono-**, **di-** and **tri-**methylene cyclobutane as shown below:

Monomethylene cyclobutane (MCB) was synthesized and characterized by [1,2] researh groups different Theoretical calculations, applying the ab initio method were also performed for this molecule ^[3]. The two isomers 1,2- and 1,3-dimethylene-cyclobutane (1,2- DMCB and 1,3- DMCB) were synthesized and characterized by different research groups $too^{[4,5]}$. Dewar et al. studied the equilibrum geometries and heats of formation of these two isomers applying the MINDO/3 method ^[6]. An x-ray diffraction measurement 1,2 dimethylene cyclobutane for showed that the molecule is planar with C_{2V} symmetry ^[7]. Little work was done for trimethylene cyclobutane (TMCB) as might be found on studying the literature, obviously due to the fact that this molecule dimerizes quickly at room temperature. Williams and Sharkey ^[5] could isolate it and characterize its IR spectrum at -80C°.

The present study is based on the MINDO/3-FORCES method, as described and applied for many other molecules by Shanshal et al. ^[8]. In this method the force constants are estimated applying Pulay's FORCES method ^[9]. Applying the so evaluated force constants to the Wilson's Secular equation ^[10];

$$\sum_{j} L_{j} \quad (\mathbf{F}_{ij} - \mathbf{M}_{ij} \lambda) = \mathbf{0}....(1)$$

and solving the equation, one obtains both vibration frequencies ($\lambda = 4\pi^2 c^2$ v^2) and vibration mode's eigenvector coefficients (L_i). These coefficients allow the graphical description of the vibration modes of each atom in the molecule when introduced to the DRAW.MOL routine developed by Shanshal et al. ^[11]. The same coefficients are used to evaluate the partial participation (APP) values ^[12] of each atom in each vibration mode too. PM3 program ^[13] were applied for the calculations of the vibration frequencies for these molecules present too.

Results and Discussion

In the present study, the equilibrium geometry of each molecule was calculated, minimizing the total energy of the molecule as a function of all its 3N cartesian coordinates. The calculated geometry values are listed in Table 1.

It is found that the calculated heat of formation value (ΔH_f kJ/mol.) decreases as the number of substituted methylene groups increases:

MCB	> 1,3- DMCB >	1,2- DMCB	> TMCB
71.57 kJ/ mo	ol 176.54 kJ/ mol	177.96 kJ/ mol	284.34 kJ/ mol

1,2-DMCB is found slightly less stable than 1,3-DMCB. A possible reason is the different repulsion energies between the adjacent atoms of the two exo-methylene groups. These results

The calculated vibration frequencies, these were scaled applying the following scaling factors ^[15]: 0.87

are in quantitative agreement with those of the PM3 method when applied to the same problem as shown in Table 2.

(C=CH₂ str.), 0.85 (ring CH₂ str.), 0.88 (C=C str.), 1.06 (C=CH₂ sciss.), 1.05 (ring CH₂ sciss.), 1.06 (=CH₂ sciss. + ring str.), 1.05 (ring CH_2 sciss. + ring str.), and no scaling for others.

For methylene cyclobutane (MCB), C_{2V} (fig.1), the total number of fundamental vibrations is 33. According to the group theoretical argumentation ^[16] the vibration modes are classified into the following irreducible representations:

$11 A_1 + 5A_2 + 9B_1 + 8B_2$

Where A_1 , B_1 and B_2 vibration modes are Raman and IR active, while A_2 modes are Raman active only. Our treatment based on the MINDO/3-FORCES method yielded all these vibration modes correctly. The scaled frequency values are listed in Table 2 together with the calculated IR absorption intensities as well as the frequency values obtained by and PM3 method. Fig. 2. shows the graphical representation of some vibration modes of (MCB) molecule as drawn through the DRAW. MOL. routine.

Fig. 1: Equilibrium geometry of methylene-cyclobutane (MCB, C_{2V}) as calculated applying MINDO/3-FORCES and PM3 methods.

THIS WORK		OTHER WORK		
Bond length, bond angles and	MINDO/3-	exptl. [17a]	calcd. [17b]	
Dihedral angles	FORCES			
(=C-H vinyl)	1.100	1.104	1.089	
(C ₂ -H ₈),(C ₃ -H ₆),(C ₂ -H ₉),(C ₃ -H ₇)	1.115	1.104	1.105	
(C ₅ -H ₁₀),(C ₅ -H ₁₁)	1.113	1.104	1.105	
C=C	1.330	1.331	1.333	
$(C_1-C_2), (C_1-C_3)$	1.522	1517	1520	
$(C_2-C_5), (C_3-C_5)$	1.524	1.565	1.553	
C=C-C	135.2			
<c<sub>2C₁C₃</c<sub>	89.7			
$< C_1 C_3 C_{5,} < C_1 C_2 C_5$	90.4			
<c<sub>2CC₃</c<sub>	89.6			
<hc=c< td=""><td>124.7</td><td></td><td></td></hc=c<>	124.7			
<hcc< td=""><td>115.7</td><td></td><td></td></hcc<>	115.7			
φ HC=CC	0.00			
φ H ₆ C ₃ C ₁ C ₂ , φ H ₈ C ₂ C ₁ C ₃	119.4			
φ C=C-C-C	180.0			
arphiCCCC ring	0.00			

Table 1. MINDO/3-FORCES calculated geometric values of methylene-cyclobutane, length $(A^{\circ})/$ angle (deg.).

Table 2: Calculated vibration frequencies and IR absorption intensities for	
methylene-cyclobutane, compared with available experimental frequencies.	

		MINDO/3-FORCES		PM3	expt.[18]
	Symmetry and description	Scaled Freq. cm-1	Intensity A km/mol	Freq. cm ⁻¹	Freq. cm ⁻¹
A ₁					
$\boldsymbol{\mathcal{U}}_1$	$=CH_2$ sym.str.	3069	21.30	3130	3070
$\boldsymbol{U}_{_2}$	ring CH ₂ sym.str.(5)	3907	69.63	3035	2935
υ_3	ring CH ₂ sym.str.(2,3,5)	2931	1.02	3025	
\mathcal{U}_4	C=C str.	1669	0.56	1890	1665
v_{5}	ring str.+ ring (δ CH ₂ sciss.)	1422	0.23	1395	1395
\mathcal{U}_{6}	δ (=CH ₂ sciss.) + ring str.	1406	1.75	1335	1385
\boldsymbol{U}_7	δ (=CH ₂ sciss.)+ ring(δ CH ₂ sciss.)	1400	0.24	1315	
$v_{_8}$	ring (δ CH ₂ sciss.) + ring str.	1338	27.03	1280	
\mathcal{U}_{9}	ring (δ CH ₂ sciss.)	1198	8.87	1122	1175
\mathcal{U}_{10}	$\operatorname{ring}(\delta \operatorname{CH}_2 \operatorname{sciss.}) + \delta \operatorname{ring}(\operatorname{CCC})$	1007	5.87	965	990
$\boldsymbol{\upsilon}_{_{11}}$	ring (δ CCC)	578	0.06	610	
A_2					
v_{12}	ring CH ₂ asym.str.	2900	0.01	3020	
$\boldsymbol{\upsilon}_{13}$	ring (δ CH ₂ rock)	1041	0.00	1126	
\mathcal{U}_{14}	ring(γ CH ₂ twist.) + γ (=CH ₂ twist.)	929	0.00	970	
v_{15}	Ring(δ CH ₂ rock.) + γ (=CH ₂ twist.)	744	0.00	806	
v_{16}	γ (=CH ₂ twist.) + ring (δ CH ₂ rock.)	686	0.00	612	
B ₁					
\mathcal{U}_{17}	$=CH_2$ asym.str.	3080	1.02	3025	3082
$v_{_{18}}$	ring CH ₂ sym.str.(2,3)	2905	0.56	1890	2900
v_{19}	ring (CC str.)+ring(δ CH ₂ sciss.)	1423	0.23	1395	
\mathcal{U}_{20}	ring str.+ ring(δ CH ₂ sciss.) (2,3)	1274	1.75	1335	1228
$\upsilon_{_{21}}$	ring str.+ ring(γ CH ₂ wag.)(2,3)	1225	0.24	1315	
$\upsilon_{_{22}}$	ring $(\gamma CH_2 wag.) + ring str.$	1134	1134	1133	1150

$\mathcal{U}_{_{23}}$	ring (γ CH ₂ wag.) + ring str.	1044	3.40	1123	1055
<i>U</i> ₂₄	δ (=CH ₂ rock.) + δ ring (def.)	868	0.84	1002	870
υ_{25}	δ (=CH ₂ rock.) + δ ring (def.)	339	0.26	307	
B ₂					
\mathcal{U}_{26}	ring CH ₂ asym. str.	2918	119.23	3045	
υ_{27}	ring CH ₂ asym.str.	2895	33.87	3017	2870
υ_{28}	ring(γ CH ₂ twist.)	1057	0.08	1107	
<i>U</i> ₂₉	$\gamma \operatorname{ring}(\operatorname{puck.}) + \operatorname{ring}(\delta \operatorname{CH}_2 \operatorname{rock.})$	980	4.07	1008	960
U_{30}	γ (=CH ₂ twist.)	870	1.26	913	
\boldsymbol{U}_{31}	Ring (γ CH ₂ rock.)	692	3.00	709	715
υ_{32}	γ ring (puck.)+ring (δ CH ₂ rock.)	397	0.01	416	
υ_{33}	$\gamma \operatorname{ring(puck.)} + \operatorname{ring}(\delta \operatorname{CH}_2 \operatorname{rock.})$	143	0.00	228	

Table 2: Continued

scaling factors [13]: 0.87 (C=CH₂ str.), 0.85 (ring CH₂ str.), 0.88 (C=C str.), 1.06 (C=CH₂ sciss.), 1.05 (ring CH₂ sciss.), 1.06 (=CH₂ sciss. + ring str.), 1.05 (ring CH₂ sciss. + ring str.).

 γ : in-plane

 δ : out of plane

Fig. 2. The graphical representation of some vibration modes of (MCB) molecule as drawn through the DRAW. MOL. routine.

For 1,2- dimethylene cyclobutane, with C_{2V} symmetry (fig.3), the calculated geometry values are listed in table 3. It possess 36 vibration modes. These are classified into the following irreducible representations:

 $12 \ A_1 + 7A_2 + 11B_1 + 6B_2$

The corresponding scaled frequencies for all these modes are listed in table 4.

Fig. 3: Equilibrium geometry for 1,2-bis (methylene) cyclobutane (DMCB) molecule with C_{2V} symmetry as calculated by MINDO/3-FORCES and PM3 methods.

Table 3. MINDO/3-FORCES calculated geometric parameters of 1.2-	bis
methylene cyclobutane, length (A°)/ angle (deg.).	

THIS WORK		OTHER WORK		
Bond lengths, angles and	MINDO/3-	exptl. [19]	Calcd.	
Dihedral angles	FORCES		[20]	
(=C-H vinyl)	1.100	1.111	1.100	
(C=C)	1.332	1.343	1.332	
$(C_1 - C_2)$	1.518	1.486	1.518	
$(C_1-C_2), (C_2-C_5)$	1.522	1.530	1.522	
(C ₃ -C ₅)	1.523	1.575	1.523	
(C-H ring)	1.114	1.122	1.114	
$< C_1 C_3 C_5, < C_2 C_5 C_3$	89.9		90.1	
$< C_2 C_1 C_3, < C_1 C_2 C_5$	90.1	91.5		
< H ₇ C ₃ H ₈ , $<$ H ₉ C ₅ H ₁₀	103.9		104.0	
<h<sub>7C₃C₅, < H₈C₃C₅</h<sub>	115.7	110.3		
< H ₁₁ C ₄ H ₁₂ , $<$ H ₁₃ C ₆ H ₁₄	110.5		110.5	
$< C_4 C_1 C_2, < C_6 C_2 C_1$	135.6		135.6	
$< C_4 C_1 C_3, < C_6 C_2 C_5$	134.3	133.8		
< H ₁₁ C ₄ C ₁ , $<$ H ₁₂ C ₄ C ₁	125.1	123.7		
	0.0			
$\varphi C_4 C_1 C_3 C_5$	180.0			
$\varphi C_1 C_2 C_5 C_3$	0.00			

	Symmetry and description	MINDO/3	-FORCES	PM3	expt.[]
	In-plane	Freq. cm ⁻ Scaled	Intensity A km/mol	Freq. cm ⁻¹	Freq. cm ⁻¹
A ₁					
$\boldsymbol{\nu}_{1}$	= CH_2 sym.str.(1,2)	3081	44.01	3143	3080
$\boldsymbol{U}_{_2}$	=CH ₂ sym.str. $(1,2)$	3069	13.15	3129	3065
υ_3	ring CH ₂ sym.str.	2913	88.24	3037	2925
υ_{4}	C=C str.	1683	0.29	1902	1640
v_{5}	ring str.+ ring δ CH ₂ (sciss.)	1390	2.46	1406	1380
$\mathcal{U}_{_6}$	δ (=CH ₂ (sciss.))(1,2) + ring str.	1416	3.81	1372	
$\boldsymbol{\upsilon}_7$	ring str. + ring δ CH ₂ (sciss.)	1266	15.89	1290	1240
$\upsilon_{_8}$	ring str.	1212	0.49	1259	
υ_9	$\operatorname{ring} \delta \operatorname{CH}_2(\operatorname{sciss.}) + \operatorname{ring} \operatorname{str.}$	1136	5.83	1107	1125
υ_{10}	ring (def.)+ring δ CH ₂ (sciss.)	939	1.74	996	
v_{11}	δ (=CH ₂ (rock.))(1,2)+ring(def.)	828	0.53	884	
$\boldsymbol{\upsilon}_{12}$	δ (=CH2(rock.))(1,2)+ring(def.)	260	0.15	315	
A ₂					
\boldsymbol{U}_{13}	= CH_2 sym.str.(1,2)	2896	0.00	3027	
$\boldsymbol{\upsilon}_{\!$	=CH ₂ sym.str. $(1,2)$	1046.	0.00	1103	
v_{15}	ring CH ₂ sym.str.	939.	0.00	997	
$\boldsymbol{\upsilon}_{_{16}}$	C=C str.	865.	0.00	923	
v_{17}	ring str.+ring δ CH ₂ (sciss.)	804.	0.00	723	
$\upsilon_{_{18}}$	δ (=CH ₂ (sciss.))(1,2) + ring str.	475.	0.00	531	
$v_{_{19}}$	ring str.+ring δCH_2 (sciss.)	115.	0.00	208	
B ₁	ring str.				
\mathcal{U}_{20}	$\operatorname{ring} \delta \operatorname{CH}_2(\operatorname{sciss.}) + \operatorname{ring} \operatorname{str.}$	3079.	34.62	3142	
υ_{21}	ring (def.) + ring δ CH ₂ (sciss.)	3067.	27.94	3120	
υ_{22}	δ (=CH ₂ (rock.))(1,2)+ring(def.)	2906.	50.28	3031	2890
$\upsilon_{_{23}}$	δ (=CH2(rock.))(1,2)+ring(def.)	1617.	0.37	1851	

Table 4: Calculated vibration frequencies and IR absorptionintensities for 1,2-bis methylene-cyclobutane, compared with
available experimental frequencies.

$\upsilon_{_{24}}$	ring δ CH ₂ sciss. + ring str.	1406	8.20	1362	
υ_{25}	ring $\delta CH_2(sciss.) + \delta (=CH_2(sciss.))(1,2)$	1382	0.02	1350	
υ_{26}	ring str.+ ring δ CH ₂ (sciss.)	1233	11.60	1273	
$\upsilon_{_{27}}$	ring $\delta CH_2(sciss.) + ring(def.)$	1138	2.84	1138	
\mathcal{U}_{28}	$\delta = CH_2(rock.)(1,2) + ring(def.)$	876	0.00	926	
\mathcal{U}_{29}	ring(def.) + CC=C (def.)	554	0.41	618	
\mathcal{U}_{30}	ring (def.) + δ (=CH ₂ (rock.))(1,2)	403	0.81	512	
B ₂					
v_{31}	ring CH ₂ asym.str.(rock.)	2909	109.30	3037	2930
U_{32}	ring δ CH ₂ (rock.) + ring(puck.)	970.	1.97	1022	950
υ_{33}	γ (=CH2(wag.))(1,2)	870.	4.07	929	880
υ_{34}	ring δ CH ₂ (rock.) + ring(puck.)	717	2.75	803	725
$\overline{\nu}_{35}$	γ (=CH ₂ (twist.))(1,2)+ring δ CH ₂ (rock.)	679	0.11	619	
$\overline{\mathcal{U}}_{36}$	γ (C=C) + ring(puck.)	291	0.03	415	

Table 4: Continued

scaling factors [13]: 0.87 (C=CH₂ str.), 0.85 (ring CH₂ str.), 0.88 (C=C str.), 1.06 (C=CH₂ sciss.), 1.05 (ring CH₂ sciss.), 1.20 (=CH₂ twist.), 1.06 (=CH₂ sciss. + ring str.), 1.05 (ring CH₂ sciss. + ring str.), and 1.00 for others.

Fig. 4. shows the graphical representation of some vibration modes of 1,2-dimethylene cyclobutane C_{2v} as drawn through the DRAW. MOL. routine.

Fig. 4. Graphical representation of some vibration modes of 1.2, bis, methylene cyclobutane as drawn through the DRAW. MOL routine.

As for 1,3-dimethylene cyclobutane(DMCB), D_{2h} , (fig. 5) the calculated geometric values are listed in table 5. Its total number of vibrations (3N-6) is 36. These are classified into the following irreducible representation:

where A_g , B_{1g} , B_{2g} and B_{3g} modes are Raman and IR inactive; B_{1u} , B_{2u} and B_{3g} modes are IR active only; and A_u mode is Raman and IR inactive, since D_{2h} group includes a center of symmetry; and the rule of mutual exclusion holds. The corresponding scaled frequencies and IR intensities are listed in table 6.

Fig. 5: Equilibrium geometry for 1,3-bis methylene cyclobutane (DMCB) molecule with D_{2h} symmetry as calculated applying both MINDO/3-FORCES and PM3 methods.

Fig. 6 shows the graphical representation of some vibration modes of 1,3-bis methylene cyclobutane as drawn through the DRAW. MOL. routine.

THIS WORK		OTHER
		WORK
Bonds length, Bond angles and	MINDO/3-	calcd.[20]
Dihedral angles	FORCES	
(C-H vinyl)	1.100	1.100
(C-H ring)	1.115	1.115
(C=C)	1.330	1.330
(C-C ring)	1.521	1.521
< C1 C3 C6 , < C1C8C10	135.3	
< C3 C5 C8 , < C3C1C8	90.7	
< C1 C3 C5 ,< C1C8C5	89.3	89.3
< HC1H , <hc5h< td=""><td>104.1</td><td>104.0</td></hc5h<>	104.1	104.0
< HC=C	124.7	
< НС6Н ,< НС10Н	110.5	110.6
< HC-C	115.7	
$\varphi_{\text{HC=C-C}}$	0.0	
$\varphi_{C=C-C}$	180	
$\varphi_{ ext{HC-C-C}}$	119.3	
$\varphi_{\text{C=C-C-C}}$	180.0	
$arphi_{ m CCCC}$ ring	0.0	

Table 5. MINDO/3-FORCES calculated geometric values of 1,3-bis methylene cyclobutane molecule, length (A°)/ angle (deg.).

Symmetry and description		MINDO/3	FORCES	PM3	expt.[17]
	In-plane	Freq. cm ⁻ Scaled	Intensity A km/mol	Freq. cm ⁻¹	Freq. cm ⁻¹
Ag					
$\boldsymbol{\mathcal{U}}_1$	$=CH_2$ sym.str.	3068.	0.00	3131	
$\boldsymbol{U}_{_2}$	ring CH ₂ sym.str.	2899	0.00	3019	
v_{3}	C=C str.	1693.	0.00	1933	
\mathcal{U}_4	δ =CH ₂ (sciss.) + ring δ CH ₂ (sciss.) + ring (breathing)	1436	0.00	1397	
v_{5}	δ =CH ₂ (sciss.)+ ring δ CH ₂ (sciss.)	1392.	0.00	1368	
$\mathcal{U}_{_6}$	ring (breathing) +ring δ CH ₂ (sciss.)	1105	0.00	1104	
v_7	ring (breathing)	531.	0.00	622	
A _u					
\mathcal{U}_8	ring γ CH ₂ (twist.)	954.	0.00	1016	
\mathcal{U}_9	γ (=CH ₂ (twist.))	711.	0.00	687	
B _{1g}					
\mathcal{U}_{10}	ring CH ₂ asym.str.	2891	0.00	3011	
v_{11}	ring γ CH ₂ (twist.)+ γ (=CH ₂ (twist.))	962.	0.00	867	
υ_{12}	γ (=CH ₂ (twist.))+ring δ CH ₂ (rock.)	664.	0.00	679	
B _{1u}					
$\boldsymbol{\upsilon}_{13}$	=CH ₂ sym. Str.	3068.	49.74	3130	3060
$\mathcal{U}_{_{14}}$	C=C str.	1650.	1.60	1897	1650
v_{15}	δ (=CH ₂ (sciss.)) + ring(def.)	1416.	2.55	1390	
v_{16}	ring γ CH ₂ (wag.)+ δ (=CH ₂ (sciss.))	1226.	48.86	1277	1220
v_{17}	ring γ CH ₂ (wag.)	927.	6.48	1009	
B _{2g}					
$v_{_{18}}$	ring γ CH ₂ (twist.) + ring(puck.)	1028.	0.00	1106	
\mathcal{U}_{19}	γ (=CH ₂ (wag.))	871.	0.00	953	
\mathcal{U}_{20}	ring(puck.) + γ (=CH ₂ (wag.))	379.	0.00	454	

Table (6): Calculated vibration and IR absorption frequencies for1,3-bis methylene cyclobutane (DMCB) molecule, compared with
available experimental frequencies.

B _{2u}					
υ_{21}	$=CH_2$ asym.str.	3080.	82.82	3139	3070
υ_{22}	ring CH ₂ sym.str.	2895.	134.72	3028	2890
$\upsilon_{_{23}}$	ring str.+ ring δ CH ₂ (sciss)	1337.	18.17	1392	1330
$\upsilon_{_{24}}$	ring str.+ ring δ CH ₂ (sciss.)	1246.	1.12	1293	1235
υ_{25}	δ (=CH ₂ (rock.)) + ring(def.)	864.	2.68	921	860
υ_{26}	ring (def.) + δ (=CH ₂ (rock.))	267.	0.22	363	
B _{3g}					
$\upsilon_{_{27}}$	=CH ₂ asym. Str.	3080	0.00	3140	
$\upsilon_{_{28}}$	ring str.+ ring γ CH ₂ (wag.)	1225.	0.00	1276	
\mathcal{U}_{29}	ring γ CH ₂ (wag.) + ring (def.)	1118.	0.00	1193	
\mathcal{U}_{30}	δ (=CH ₂ (rock.)) + ring γ CH ₂ (wag.)	876.	0.00	933	
v_{31}	ring (def.) + δ (=CH ₂ (rock.))	396.	0.00	467	
B _{3u}					
\mathcal{U}_{32}	ring CH ₂ asym. Str.	2891.	70.88	3006	2885
υ_{33}	ring (puck.) + ring δ CH ₂ (rock.)	940.	940.	942	1008
$\upsilon_{_{34}}$	γ (=CH ₂ (wag.))	868.	868.	868	923
υ_{35}	ring (puck.) + ring δ CH ₂ (rock.)	410.	410.	412	493
U_{36}	ring (puck.) + γ (=CH ₂ (wag.))	95.	95.	97	215

Table 6: Continued

scaling factors [13]: 0.87 (C=CH₂ str.), 0.85 (ring CH₂ str.), 0.88 (C=C str.), 1.06 (C=CH₂ sciss.), 1.05 (ring CH₂ sciss.), 1.20 (=CH₂ twist.), 1.06 (=CH₂ sciss. + ring str.), 1.05 (ring CH₂ sciss. + ring str.), and 1.00 for others.

Fig. 6. Graphical representation of some vibration modes of 1.3-bis methylene cyclobutane as drawn through the DRAW. MOL routine.

Finally MINDO/3-FORCES treatment was done for trimethylene cyclobutane, the resulting geometric parameters, C_{2V} symmetry (fig. 7), are listed in table 7. Its 39 fundamental vibrations are classified into the following irreducible representations: Its corresponding scaled frequencies and IR absorption intensities as yielded by the MINDO/3-FORCES treatment are listed in table 8.

 $14A_1 + 5A_2 + 12B_1 + 8B_2$

Fig. 7: Equilibrium geometry for 1, 2, 3 -Tis (methylene) cyclobutane (TMCB) molecule with C_{2V} symmetry as calculated by MINDO/3-FORCES and PM3 methods.

Figure 8 shows the graphical representation of some vibration modes of 1,2,3 tri- methylene cyclobutane molecule as drawn through the DRAW. MOL. routine.

Bonds length, bond angles and Dihedral	MINDO/3-FORCES
angles.	
(=C-H)	1.100
(C ₆ -H ₈),(C ₆ -H ₉)	1.115
$(C_1-C), (C_1-C_3)$	1.518
$(C_3-C_6), (C_2-C_6)$	1.520
$(C_2=C_5), (C_3=C_7)$	1.332
(C ₁ =C ₄)	1.334
< H ₁₄ C ₅ H ₁₅ , $<$ H ₁₁ C ₇ H ₁₀	110.5
< H ₁₄ C ₅ C ₂ , $<$ H ₁₅ C ₅ C ₂ , $<$ H ₁₀ C ₇ C ₃ , $<$ H ₁₁ C ₇ C ₃	125.1
$C_5C_2C_1$,<< $C_7C_3C_1$,< $C_5C_2C_6$,< $C_7C_3C_6$	134.8
< H ₈ C ₆ H ₉	103.9
< H ₈ C ₆ C ₂ , $<$ H ₉ C ₆ C ₃	115.8
$< C_1 C_2 C_6, < C_1 C_3 C_6$	89.7
$< C_2 C_1 C_3, < C_2 C_6 C_3$	90.2
	60.7
	-60.7
φ CCCC ring	0.00
	118.8

Table 8. MINDO/3-FORCES calculated geometric parameters of1,2,3-tris methylene cyclobutane, length (A°)/angle (deg.).

	Symmetry and description	MINDO/3-FORCES		PM3	expt.[21]
In-plane		Freq. cm ⁻ Scaled	Intensity A km/mol	Freq. cm ⁻¹	Freq. cm ⁻¹
A ₁					
$\boldsymbol{\upsilon}_1$	= CH_2 asym.str.(2,3)	3080	76.051	3145	3075
$\boldsymbol{U}_{_2}$	=CH ₂ sym. str. $(1,2,3)$	3070	4.47	3137	
υ_3	=CH ₂ sym. str. (1,2,3)	3067	14.93	3133	
\mathcal{U}_4	ring CH ₂ sym. str.	2900	67.375	3088	2890
v_{5}	(C=C) str. (1,2,3)	1703	0.04	1920	
\mathcal{U}_{6}	(C=C) str. (1)	1603	0.14	1805	
v_7	ring δ CH ₂ (sciss.)	1420	3.68	1386	
\mathcal{U}_8	δ (=CH ₂ (sciss.)) (1)	1413	10.65	1322	
\mathcal{U}_9	δ (=CH ₂ (sciss.))(1,2,3) +ring δ CH ₂ (sciss.)	1390	0.02	1305	
v_{10}	ring str.+ ring δ CH ₂ (sciss.)	1208	1.04	1231	
v_{11}	ring (def.)+ δ (=CH ₂ (rock.)) (2,3)	940	0.22	953	
v_{12}	δ (=CH ₂ (rock.)) (2,3) +ring (def.)	826	1.42	850	
$\boldsymbol{\upsilon}_{13}$	ring breathing	517	0.21	633	
$\upsilon_{_{14}}$	δ (=CH ₂ (rock.)) (2,3)+ring (def.)	268	0.33	264	
A ₂					
v_{15}	ring γ CH ₂ (twist.)	992	0.00	1032	
v_{16}	γ (=CH ₂ (wag.)) (2,3)	867	0.00	984	
$\boldsymbol{\upsilon}_{\!\scriptscriptstyle 17}$	γ (=CH ₂ (twist.)) (1) +ring (puck.)	786	0.00	670	
$\upsilon_{_{18}}$	γ (=CH ₂ (twist.)) (1,2,3)	681	0.00	592	
v_{19}	ring (puck .) + γ (=CH ₂ (twist.))	364	0.00	384	
B ₁					
U_{20}	$= CH_2$ asym. str. (1,2,3)	3081	25.41	3145	
v_{21}	=CH ₂ asym. str. $(1, 2, 3)$	3079	10.99	3144	
υ_{22}	=CH ₂ sym. str. (2,3)	3068	46.68	3136	

Table (8: Calculated vibration and IR absorption frequencies for1,2,3 tris metlenecyclobutane (DMBC) molecule, compared with
available experimental frequencies.

υ_{23}	C=C str.(2,3)	1633	0.89	1720	1644
υ_{24}	δ (=CH ₂ (sciss.))(2,3)	1413	7.41	1324	
υ_{25}	γ (=CH ₂ (twist.))	1224	11.28	1229	
U_{26}	ring str. +ring γ CH ₂ (wag.)	1181	9.79	1211	
<i>U</i> ₂₇	ring (def.) +ring γ CH ₂ (wag.) + δ (=CH ₂ (rock.)) (1,2,3)	1034	1.14	1080	
$\upsilon_{_{28}}$	δ (=CH ₂ (rock.)) (2,3) +ring γ CH ₂ (wag.)	886	0.73	878	
υ_{29}	δ (=CH ₂ (rock.))(1)	829	0.20	851	
U_{30}	ring (def.) + δ (=CH ₂ (rock.))(1,2,3)	456	0.74	485	
\boldsymbol{U}_{31}	δ (=CH ₂ (rock.))(1,2,3)	258	0.15	237	
B ₂					
$\upsilon_{_{32}}$	ring CH ₂ asym. str.	2893	64.12	3031	
υ_{33}	ring δ CH ₂ (rock.) + ring(puck.)	903	5.43	1035	
U_{34}	γ (=CH ₂ (wag.))(1)	868	5.92	1007	865
υ_{35}	γ (=CH ₂ (wag.)) (1,2,3) +ring δ CH ₂ (rock.)	855	0.35	954	
D_{36}	ring (puck.)+ γ (=CH ₂ (twist.)) (2,3)	694	0.06	727	
<i>U</i> ₃₇	ring δ CH ₂ (rock.)+ γ (=CH ₂ (twist.)) (2,3)	504	0.06	559	
• >					
U_{38}	ring (puck.) + γ (=CH ₂ (wag.)) (1,2,3)	261	0.05	272	

Table 8:Continued

scaling factors [13]: 0.87 (C=CH₂ str.), 0.85 (ring CH₂ str.), 0.88 (C=C str.), 1.06 (C=CH₂ sciss.), 1.05 (ring CH₂ sciss.), 1.20 (=CH₂ twist.), 1.06 (=CH₂ sciss. + ring str.), 1.05 (ring CH₂ sciss. + ring str.).

Fig. 8. Graphical representation of some vibration modes of 1,2,3trimethylene cyclobutane as drawn through the DRAW. MOL routine.

Inspection of the frequency values in table 2, 4, 6 and 8 indicates that all

four molecules show the following common relations;

vasym(=CH₂ str.)> vsym (=CH₂ str.) vsym (ring CH₂ str.) > vasym (ring CH₂ str.) δ (=CH₂ (sciss.)) > δ (=CH₂ (rock.)) γ (=CH₂ (wag.)) > γ (=CH₂ (twist.))

It was further found that;

1.	the (=CH ₂)	stretching	2. the ring CH ₂ vibrations
	vibrations are un	affected by	depend on the number of
	the number of	methylene	methylene groups as follows:
	groups.		
	B. or por		
a.	ring CH ₂ sym. str.	\rightarrow ring CH ₂ sym. s	tr. \rightarrow ring CH ₂ sym. str.
	1,2-DMCB	MCB	ТМСВ
	2913 cm ⁻¹	2905cm ⁻¹	2900 cm ⁻¹
an	d		
	ring CH ₂ sym. str.	> ring CH ₂ sym. str	
	1,2-DMCB	1,3-DMCB	
	2913 cm ⁻¹	2895cm ⁻¹	
h	ring CH2 asym_st	r > ring CH ₂ asym	str > ring CH2 asym str
υ.	MCD		TMCD
		I,2-DMCB	
	2918 cm ⁻¹	2910 cm ⁻¹	2893 cm ⁻¹
an	d		
	ring CH. asym str	> ring CH. asym	str

ring CH₂ asym. str. > ring CH₂ asym. str. 1,2-DMCB 1,3-DMCB 2910 cm⁻¹ 2891 cm⁻¹

3-The asym. ringCH₂ stretching frequency decreases as the number of the *exo*- methylene groups increases.

4- The C=C stretching frequency decreases as the number of the same methylene groups increases;

C=C str.	>	C=C str.	> C=C str.
MCB		1,3-DMCB	ТМСВ
1669 cm ⁻¹		1650 cm ⁻¹	1633 cm ⁻¹

the C=C stretching vibration frequency of 1,2-DMCB showing the lowest values 1617 cm⁻¹.

5-The ring stretching frequency decreases as the number of methylene groups increases:

ring str.	>	ring str.	>	ring str.
MCB		1,2-DMCB		ТМСВ
1274 cm ⁻¹		1266 cm ⁻¹		1225 cm^{-1}

the ring stretching frequency of 1,3-TDMCB showing the highest valuede1337cm⁻¹.m

The =CH₂ bending frequency decreases as the number of methylene groups increases:

a.	$\delta(=CH_2(sciss.))$) > δ(=0	CH_2 sciss.))	; $\delta(=CH_2 \text{ sciss.}))$	$\delta = CH_2 (sciss.)$
	MCB	1,3	-DMCB	1,2-DMCB	ТМСВ
	1422 cm ⁻¹	14	417 cm ⁻¹	1416 cm- ¹	1413 cm^{-1}
b.	$\delta(=CH_2 (rock.))$	> δ(=C	H_2 (rock.))	$> \delta(=CH_2 (rock.))$)
	МСВ	1,2-	DMCB	ТМСВ	
	868 cm ⁻¹	828	3 cm ⁻¹	826 cm- ¹	
and					
	$\delta(=CH_2 (rock.))$	>	$\delta = CH_2 (r)$	ock.))	
	1,3-DMCB		1,2-DMCE	3	
	864 cm ⁻¹		828 cm ⁻¹		

The reason for these sequences may be attributed to the crowding strain which makes the scissoring or rocking motion in the same plane more difficult as the number of methylene groups increases.

6-The CH₂ bending vibration frequency increases as the number of methylene groups increases:

rin	$g \delta(CH_2(sciss.)) > 1$	ring ð ($(CH_2 \text{ sciss.}) > ring$	δ(CH	2 (sciss.))
	ТМСВ	1,2-1	DMCB	MC	B
	1421cm ⁻¹	1406	cm ⁻¹	1338 cm- ¹	
and	l				
	ring δ(CH ₂ (rock.))	>	ring $\delta(CH_2(rock.))$	>	ring δ(CH ₂ (rock.))
	ТМСВ		1,2-DMCB		МСВ
	903 cm ⁻¹		717 cm ⁻¹		692 cm ⁻¹

the ring CH₂ rocking frequency of 1,3-DMCB shows the highest value 940 cm⁻¹.

Acknowledgement

The authors thank Prof. Dr. M. Shanshal for allowing them to use his computational facilities usefull discussion of the results.

References 1-S. Schömaker and J.R.Fisher , J.Am.Chem.Soc., 1944, 66,636. 2-T.B.Malloy, JR.F.Fischer and R.M.Hedges, J.Chem .Phys., 1970, 52(10), 5325. 3-A. Skancke, P. N. Skancke, Eckert-Maksic, Z. Maksic B. Theochem, 1987, 35 (3-4), 259, (Eng.). 4-A. T. Blomquist and J. A. Verdol, J. Am . Chem. Soc., 1956, 78, 109. 5-J.K.Williams and W.H.Sharkey ,J.Am .Chem. Soc., 1959, 81, 4269. 6-R. C. Bingham, M. J. S. Dewar and D. H. LC, J. Am. Chem. Soc., 1975, 97, 1285, 1294, 1302, 1307. 7- L. Montgomery, C. A. Wilson and J. D. Wieeser, S. Mol. Struct., 129, 69-79 (1985). 8-A) D. H. Abed and M. Shanshal, Arbeitsberich Des Institüts FürTheoretische Chemie, Stüttgart, 1990, 27, 389. B)-D. H. Abed, S. F. Al-Saidi and M. Shanshal, Chim.

Acta Turc., 1995, 23, 7.

9- P. Pulay, Mo. phys., 1969, 17,197. 10- E. B. Wilson, Ir., J. C. Decius, P. C. Cross, " Molecular Vibration", Mc Graw-Hill, New York, (1955). 11- D. H. Abed, M. B. Mammo, S. F. Al-Saidi and M. Shanshal, Iraqi, J. Sci., 1990, **9(31)**, 539. 12- M. Shanshal, Z. Naturforsch, 28a, 1892 (1975). 13-R.C.Bingham, M.J.S.Dewar and D.H.LC, J.Am. Chem. Soc., 1975, 97,1285, 1294, 1302, 1307. 14- R. Leach Andrew, "Molecular Modelling Principles and Applications", Second Edition, Prentice Hall, London,(2001). 15- R.M.Kubba, Z.Naturforsc., 2001, 56a ,505. 16- G. Davidson, "Introductory Group Theory For Chemists", Applied Science Publishers Ltd. London ,Elsevier Publishing Comp. Ltd., (1990). 17- a: N. L. Allinger ,V. S. Mastyukov. Zk. Struct. khim., 1983, 24, 172. b: M.Eckert-Maksic, Z. B. Maksic, A. Skancke and P. N. Skancke, J. Phys. Chem., 1987, 91, 2786.

- 19- LAWRENCE. MONTGOMERY,
 CRAIG. A.WILSON and JOHN D.
 WIESER, J. Mol. Struct., 1985,
 129, 69.
- 20- P. Hemmersbach, M. Klessinger and P. Bruckmann , *J. Am. Chem. Soc.*, 1978, 100, 6344.
 21- J. K. Williams and W. H.
 Sharkey, *J. Am . Chem. Soc.*, 1959,

81, 4269.